Note:-

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of sports is given in General Proficiency and Ethics Syllabus.
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
3. Electronics gadgets including Cellular phones are not allowed in the examination.
4. All branches are to be divided into groups ‘A’ or ‘B’ as per the suitability of the Institute/College, so that there is an equitable distribution of teaching load in odd and even semester.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)

SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 1st YEAR (SEMESTER – II) (Common for all branches)

Credit Based Scheme w.e.f. 2012-13

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Classwork</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MATH102B</td>
<td>MATHEMATICS-II</td>
<td>3 1 1</td>
<td>25 75</td>
<td>- 100</td>
<td>4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>PHY102B</td>
<td>ENGINEERING PHYSICS-II</td>
<td>3 1 1</td>
<td>25 75</td>
<td>- 100</td>
<td>4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>ME101 B</td>
<td>MANUFACTURING PROCESSES (Gr-B) OR ENGINEERING CHEMISTRY (Gr-A)</td>
<td>3 1 1</td>
<td>25 75</td>
<td>- 100</td>
<td>4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>EE101B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING (Gr-B) OR INTRODUCTION TO COMPUTERS & PROGRAMMING (Gr-A)</td>
<td>3 1 1</td>
<td>25 75</td>
<td>- 100</td>
<td>4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>ECE102B</td>
<td>BASICS OF ELECTRONICS ENGINEERING OR BASICS OF BIO TECHNOLOGY OR ORAL COMMUNICATION SKILLS OR BASICS OF CIVIL ENGINEERING</td>
<td>3 1 1</td>
<td>25 75</td>
<td>- 100</td>
<td>4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>ME103B</td>
<td>ENGINEERING GRAPHICS & DRAWING (Gr-B) OR ELEMENTS OF MECHANICAL ENGINEERING (Gr-A)</td>
<td>1 - 4 40</td>
<td>- 60</td>
<td>100</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ME105B</td>
<td>- 1 - 25 75</td>
<td>-</td>
<td>100</td>
<td>4 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>PHY104B</td>
<td>PHYSICS LAB-II</td>
<td>- - 2</td>
<td>20 30</td>
<td>50</td>
<td>1 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>ME107B</td>
<td>WORKSHOP PRACTICE (Gr-B) OR CHEMISTRY LAB(Gr-A)</td>
<td>- - 4 40</td>
<td>60</td>
<td>100</td>
<td>2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH103B</td>
<td>- - 2 20</td>
<td>30</td>
<td>50</td>
<td>1 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>EE103B</td>
<td>PRINCIPLES OF ELECTRICAL ENGINEERING LAB (Gr-B) OR COMPUTER PROGRAMMING LAB (Gr-A)</td>
<td>- - 2 20</td>
<td>30 50</td>
<td>1 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSE103B</td>
<td>- - 2 20</td>
<td>30</td>
<td>50</td>
<td>1 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>ME109B</td>
<td>ELEMENTS OF MECHANICAL ENGINEERING LAB (Gr-A)</td>
<td>- - 2 20</td>
<td>30</td>
<td>50</td>
<td>1 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>GP 102B</td>
<td>GENERAL PROFICIENCY AND ETHICS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 5</td>
<td>20 8</td>
<td>12 6</td>
<td>245 230</td>
<td>375 450</td>
<td>230 170</td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency and Ethics Syllabus.
2. Each student has to undergo a workshop at least 4 weeks (80-100 hours) at the end of II semester during summer vacations. Out of four weeks two weeks would be dedicated to general skills and two weeks training for specialized discipline/department. The evaluation of this training shall be carried out in the III semester.
3. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator are prohibited in the examination.
4. Electronics gadgets including Cellular phones are not allowed in the examination.
5. All branches are to be divided into groups ‘A’ or ‘B’ as per the suitability of the Institute/College, so that there is an equitable distribution of teaching load in odd and even semester.
6. Elective course HUM-102B (ORAL COMMUNICATION SKILLS) is deleted w.e.f session 2013-14
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duratio n of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practic al</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MGT 201 B</td>
<td>ENGINEERING ECONOMICS (Common for all branches Except BT & BME) Gr-A Or ENVIRONMENT STUDIES (Common for all branches Gr-B)</td>
<td>4</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>GES201B</td>
<td></td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75*</td>
<td>75*</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CSE 201B</td>
<td>DATA STRUCTURES (Common with CSE,ECE and AEI)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>CSE205B</td>
<td>COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES (Common with CSE)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>IT201B</td>
<td>DISCRETE MATHEMATICAL STRUCTURES</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>ECE201B</td>
<td>DIGITAL ELECTRONICS (Common with CSE,ECE,EE,EEE,IC and 4th Sem BME and AEI)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>ECE210B</td>
<td>COMMUNICATION SYSTEMS (Common with CSE, ECE IVth Sem and AEI VIth Sem)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>CSE221B</td>
<td>DATA STRUCTURES LAB (Common with CSE,ECE and AEI)</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>CSE225B</td>
<td>COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES LAB (Common with CSE)</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>ECE221B</td>
<td>DIGITAL ELECTRONICS LAB (Common with CSE,ECE,EE,EEE,IC and 4th Sem BME and AEI)</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>GES 203 B</td>
<td>ENVIRONMENTAL STUDIES FIELD WORK (Common for all branches Gr-B)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25*</td>
<td>25*</td>
</tr>
<tr>
<td>11</td>
<td>ME 217B</td>
<td>WORKSHOP (Common for all branches Except BT, AE)</td>
<td>--</td>
<td>--</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19</td>
<td>5</td>
<td>8</td>
<td>260</td>
<td>450</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>5</td>
<td>8</td>
<td>310</td>
<td>375</td>
<td>90</td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency and Ethics Syllabus.

2. *The Environmental studies (GES-201 B & Environment Studies Field work (GES-203B) are compulsory & qualifying courses only.

3. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.

4. Electronics gadgets including Cellular phones are not allowed in the examination

5. All branches are to be divided into groups ‘A’ or ‘B’ as per the suitability of the Institute/College, so that there is an equitable distribution of teaching load in odd and even semester.
Scheme of Studies & Examinations

B.Tech. 2nd Year (Semester – IV) Information Technology

Credit Based Scheme w.e.f. 2013-14

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>marks</td>
<td>Theory</td>
</tr>
<tr>
<td>1</td>
<td>MGT 201 B</td>
<td>ENGINEERING ECONOMICS (Common for all branches Except BT & BME) Gr-B OR ENVIRONMENT STUDIES (Common for all branches) Gr-A</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>GES-201B</td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75*</td>
</tr>
<tr>
<td>2</td>
<td>IT222B</td>
<td>PRINCIPLES OF OPERATING SYSTEMS</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>IT204B</td>
<td>COMPUTER ORGANIZATION</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>CSE202B</td>
<td>DATABASE MANAGEMENT SYSTEMS (Common with CSE)</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>CSE 204B</td>
<td>OBJECT ORIENTED PROGRAMMING (Common with CSE, AEl and 5th Sem ECE,IC,EEE)</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>CSE208B</td>
<td>INFORMATION SYSTEM ANALYSIS AND DESIGN (Common with CSE)</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>IT222B</td>
<td>OPERATING SYSTEMS LAB</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>CSE222B</td>
<td>DBMS LAB (Common with CSE)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>CSE224B</td>
<td>OOPS LAB (Common with CSE, AEl and 5th Sem ECE,IC,EEE)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>GES203 B</td>
<td>ENVIRONMENTAL STUDIES FIELD WORK (Common for all branches Gr. A)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>GPTT202B</td>
<td>GENERAL PROFICIENCY AND ETHICS</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>5</td>
<td>6</td>
<td>210</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>5</td>
<td>6</td>
<td>185</td>
<td>375</td>
</tr>
</tbody>
</table>

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency and Ethics Syllabus.
2. *The Environmental studies (GES-201B & Environment Studies Field work (GES-203B) are compulsory & qualifying courses only.
3. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
4. Electronics gadgets including Cellular phones are not allowed in the examination.
5. Each student has to undergo Professional Training of at least 4 weeks from the industry, institute, research lab, training center etc during summer vacation and its evaluation shall be carried out in the V semester.
6. All branches are to be divided into groups ‘A’ or ‘B’ as per the suitability of the Institute/College, so that there is an equitable distribution of teaching load in odd and even semester.
Deenbandhu Chhotu Ram University of Science & Technology, Murthal (Sonepat)

SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 3rd YEAR (SEMESTER – V) INFORMATION TECHNOLOGY

Credit Based Scheme w.e.f. 2014-15

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Classwork</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IT-301B</td>
<td>DATA BASE ADMINISTRATION</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>IT-303B</td>
<td>PRINCIPLES OF SOFTWARE ENGINEERING</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>IT-305B</td>
<td>JAVA PROGRAMMING</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>CSE305B</td>
<td>COMPUTER NETWORKS (Common with CSE)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>CSE307B</td>
<td>ANALYSIS AND DESIGN OF ALGORITHMS (Common with CSE)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>CSE-309B</td>
<td>THEORY OF AUTOMATA & COMPUTATION (Common with CSE)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>IT-321B</td>
<td>DATA BASE ADMINISTRATION LAB</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>IT-323B</td>
<td>SOFTWARE ENGINEERING LAB</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>IT-325B</td>
<td>JAVA PROGRAMMING LAB</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>CSE325B</td>
<td>COMPUTER NETWORKS LAB (Common with CSE)</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>IT-331-B</td>
<td>PROFESSIONAL TRAINING-I</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Total: 18 6 10 280 450 120 850 30

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency and Ethics Syllabus.
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
3. Electronics gadgets including Cellular phones are not allowed in the examination.
4. Assessment of Professional Training obtained at the end of IVth Semester, will be done on seminar, viva-voce, report and certificate of Professional Training obtained by the student from the industry/institute/research lab/training centre etc.
SCHEME OF STUDIES & EXAMINATIONS

B.Tech. 3rd YEAR (SEMESTER – VI) INFORMATION TECHNOLOGY

Credit Based Scheme w.e.f. 2014-15

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duratio n of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IT302B</td>
<td>WEB TECHNOLOGIES (Common with CSE)</td>
<td>L 3 T 1 P</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>IT-304B</td>
<td>SOFTWARE TESTING</td>
<td>L 3 T 1 P</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>IT306B</td>
<td>ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS</td>
<td>L 3 T 1 P</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>IT308B</td>
<td>PRINCIPLES OF PROGRAMMING LANGUAGES</td>
<td>L 3 T 1 P</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>IT310B</td>
<td>PARALLEL COMPUTING</td>
<td>L 3 T 1 P</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CSE303B</td>
<td>COMPUTER GRAPHICS (Common with CSE 5th Sem)</td>
<td>L 3 T 1 P</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>IT322B</td>
<td>WEB TECHNOLOGIES LAB</td>
<td>L - T - P 2</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>IT324B</td>
<td>SOFTWARE TESTING LAB</td>
<td>L - T - P 2</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>IT326B</td>
<td>ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS LAB</td>
<td>L - T - P 2</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>CSE323B</td>
<td>COMPUTER GRAPHICS LAB (Common with CSE 5th Sem)</td>
<td>L - T - P 2</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>HUM302B</td>
<td>REPORT WRITING SKILLS (Common to all branches)</td>
<td>L 1 T - P 2</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>HUM304B</td>
<td>ORAL PRESENTATIONS SKILLS</td>
<td>L - T - P 2</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>GPIT302B</td>
<td>GENERAL PROFICIENCY AND ETHICS</td>
<td>L 1 T - P -</td>
<td>20</td>
<td>75</td>
<td>75</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Total | 20 | 6 | 10 | 275 | 500 | 225 | 1000 | 32 |

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency and Ethics Syllabus.
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
3. Electronics gadgets including Cellular phones are not allowed in the examination.
4. Each student has to undergo Professional Training of at least 4 weeks from the industry, institute, research lab, training center etc during summer vacation and its evaluation shall be carries out in the VII semester.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class work</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duratio n of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>IT 401 B</td>
<td>ADVANCED JAVA</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>IT 403 B</td>
<td>ADVANCED COMPUTER NETWORKS</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>CSE401 B</td>
<td>MOBILE APPLICATION DEVELOPMENT (Common with CSE)</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>CCSE404 B</td>
<td>SOFTWARE PROJECT MANAGEMENT (Common with CSE 8th Sem)</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>OPEN ELECTIVE</td>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>IT421 B</td>
<td>ADVANCED JAVA LAB</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>CSE421 B</td>
<td>MOBILE APPLICATION DEVELOPMENT LAB (Common with CSE)</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>IT425 B</td>
<td>PROJECT</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>IT 425 B</td>
<td>PROFESSIONAL TRAINING-II</td>
<td>-</td>
<td>2</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>315</td>
<td>375</td>
<td>60</td>
</tr>
</tbody>
</table>

* List of Open Electives

1. MEI623B ENTREPRENEURSHIP 6 BT401B BIO-INFORMATICS
2. MBE451B MEDICAL INSTRUMENTATIONS 7 AE417B MODERN VEHICLE TECHNOLOGY
3. ECE305B CONSUMER ELECTRONICS 8 CE451B POLLUTION & CONTROL
4. EE451B ENERGY AUDIT 9 CSE411B MANAGEMENT INFORMATION SYSTEM
5. EEE457B ENERGY RESOURCES & TECHNOLOGY 10 IT413B CYBER SECURITY

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency Syllabus.
2. Students will be permitted to opt for any one elective run by the other department. However, the department shall offer those elective for which they have expertise. The minimum number of students should be twenty to run an elective. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise.
3. Assessment of Professional Training-II, undergone at the end of VI semester, will be based on seminar, viva-voce, report and certificate of Professional Training obtained by the student from the industry, institute, research lab, training center etc
4. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
5. Electronics gadgets including Cellular phones are not allowed in the examination
6. Project Coordinator will be assigned the project load of maximum 2 hrs. per week including his own guiding load of one hr. However the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under his supervision.
Scheme of Studies & Examinations

B.Tech. Final Year (Semester – VIII) Information Technology

Credit Based Scheme w.e.f. 2015-16

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Classwork</th>
<th>Examination Marks</th>
<th>Total</th>
<th>Credit</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IT402B</td>
<td>DATA ANALYTICS & APPLICATIONS</td>
<td>3 1 1</td>
<td>25 75</td>
<td></td>
<td></td>
<td>100</td>
<td>4 3</td>
</tr>
<tr>
<td>2</td>
<td>IT404B</td>
<td>LINUX ADMINISTRATION</td>
<td>3 1 1</td>
<td>25 75</td>
<td></td>
<td></td>
<td>100</td>
<td>4 3</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>ELECTIVE-I</td>
<td>4 -</td>
<td>25 75</td>
<td></td>
<td></td>
<td>100</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>ELECTIVE II</td>
<td>4 -</td>
<td>25 75</td>
<td></td>
<td></td>
<td>100</td>
<td>4 3</td>
</tr>
<tr>
<td>5</td>
<td>IT422B</td>
<td>DATA ANALYTICS & APPLICATIONS LAB</td>
<td>- - 2</td>
<td>20 30</td>
<td>50 1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>IT424B</td>
<td>LINUX ADMINISTRATION LAB</td>
<td>- - 2</td>
<td>20 30</td>
<td>50 2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>IT426B</td>
<td>SEMINAR</td>
<td>- - 2</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>GPT402B</td>
<td>GENERAL FITNESS FOR THE PROFESSION</td>
<td>1 -</td>
<td>-</td>
<td>100 100</td>
<td></td>
<td>200</td>
<td>8 3</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>ELECTIVE II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | Total | 15 2 14 | 265 300 285 850 | 32 |

Elective – I

- IT452B NETWORK SECURITY
- IT454B MOBILE COMPUTING
- IT456B MULTIMEDIA & VIRTUAL REALITY
- IT460B DATA MINING
- CSE453B SOFTWARE AGENTS
- CSE452B SOFT COMPUTING

Elective – II

- IT462B M – COMMERCE
- IT464B SOFTWARE STANDARDS AND QUALITY
- CSE455B ADVANCE COMPUTER ARCHITECTURE
- CSE403B CLOUD COMPUTING
- CSE460B GREEN COMPUTING
- CSE466B EMBEDDED SYSTEMS

Note:

1. Every student has to participate in the sports activities. Minimum one hour is fixed for sports activities either in the morning or evening. Weightage of Sports is given in General Proficiency Syllabus.
2. Students will be permitted to opt for two electives one from Electives-I and one from Elective-II to be offered by the department. However, the department shall offer those electives for which they have expertise. The minimum number of students should be twenty to run an elective. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise.
3. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator is prohibited in the examination.
4. Electronics gadgets including Cellular phones are not allowed in the examination.
Objective

The course aims at developing the desired language (English) skills of students of engineering and technology so that they become proficient in communication to excel in their professional lives. The course has been designed so as to enhance their linguistic and communicative competence.

Course Content

UNIT I :- Communicative Grammar:

A) Spotting the errors pertaining to tenses, conditional sentences, Concord – grammatical concord, notional concord and the principle of proximity b/w subject and verb

B) Voice, Reported Speech.

UNIT II :- Language through Literature:

Linguistic Reading of the following texts

A) ‘Kabuliwallah’ by Rabindranath Tagore*

B) ‘Am I Blue?’ by Alice Walker*

C) ‘If You are Wrong, Admit It’ by Dale Carnegie*

D) ‘Engine Trouble’ by R.K. Narayan*

The prescribed texts will be used as case studies for various components of the syllabus. * the Source is given in the list of Texts Books given below.

UNIT III :- Group Communication:

A) Communication: concept, Process and Barriers

B) Communicating using Standard Pronunciation with the help of IPA

C) Formal Speaking, with peers (e.g. discussion, talks on current issues in a class)

D) Writing official letters on issues concerning students and social life

E) Writing small reports on scientific issues, IT issues, University fests/programmes

F) E-mail writing and writing for web

UNIT IV :- Communicative Creativity:

A) Comprehension: Extracting, interpreting, summarizing, reviewing and analyzing the prescribed texts.

B) Composition: Developing themes and situations through role play activities or dialogue writing.

TEXT BOOKS

2. Communicative English for Engineers and Professionals by Nitin Bhatnagar & Mamta Bhatnagar New Delhi: Pearson / Longman

SUGGESTED READING

1. Pink, M.A. and S.E. Thomas. English Grammar, Composition and Correspondence. Delhi: S. Chand and Sons

SCHEME OF END SEMESTER EXAMINATION (MAJOR TEST)

Theory

1. The duration of the exam will be 3 hours.

2. The Question Paper for this theory course shall have seven questions in all covering all the units of the syllabus.

3. The student is required to attempt all the seven questions.

4. Questions No. 1 based on Unit I is of 15 marks. It may be in the form of ‘Do as directed: trace the error, choose the correct alternative, supply the correct alternative/s, change the voice, convert the speech from direct to indirect or vice-versa’.

5. Question no 2 and 3 based on prescribed texts in Unit II. Question no 2 of 10 marks is to evaluate the comprehension of the text through short answer questions or a long answer question to assess the students’ reading comprehension, interpretative and analytical abilities. Question no 3 of 15 marks will judge the linguistic aspect of the text such as using a particular word in its various syntactic forms like noun, adjective, verb etc.; matching the lists of words and their explanation; providing opposite/similar meanings and other grammar components prescribed in Unit I of the syllabus.

6. Question no 4 based on Unit III is of 10 marks. It may be in the form of transcription of words given, describe an event, classmate, discuss an issue etc.

7. Question no 5 based on Unit III is of 10 marks. It requires the student to frame either a small report on a topic given or write the given official letter, or e-mail a message.

8. Question no 6 based on unit IV is of 10 marks. It evaluates the Comprehension and Interpretation of the texts prescribed in Unit II. The vocabulary, general understanding and interpretation of the content may be evaluated in the form of question answer exercise, culling out important points, suggesting a suitable topic/title, summarising and interpreting.

9. Question No. 7 based on unit IV is of 5 marks. It requires the student to develop a hypothetical situation in a dialogue form, or to develop an outline, key expression, for role play activity.
UNIT-I

Infinite series: Convergence and divergence, Comparison, D’Alembert’s ratio, Integral, Raabe’s, Logarithmic and Cauchy root tests, Alternating series, Absolute and conditional convergence.

Applications of Differentiation: Taylor's and Maclaurin's series, Asymptotes, Curvature Asymptotes.

UNIT-II

Partial Differentiation & its Applications: Functions of two or more variables; partial derivatives, Total differential and differentiability, Derivatives of composite and implicit functions, Jacobians, Higher order partial derivatives.

Homogeneous functions, Euler's theorem, Taylor's series for functions of two variables (without proof), maxima-minima of function of two variables, Lagrange's method of undetermined multipliers, Differentiation under integral sign.

UNIT-III

Applications of Single & Multiple Integration: Applications of single integration to find volume of solids and surface area of solids of revolution. Double integral, change of order of integration, Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves and volume of solids of revolution.

Triple integral, volume of solids, change of variables, Beta and gamma functions and relationship between them.

UNIT-IV

Vector Calculus: Differentiation of vectors, scalar and vector point functions Gradient of a scalar field and directional derivative, divergence and curl of a vector field and their physical interpretations.

Integration of vectors, line integral, surface integral, volume integral, Green, Stoke's and Gauss theorems (without proof) and their simple applications.

TEXT BOOKS:

REFERENCE BOOKS:

Note:

1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
PHY 101B ENGINEERING PHYSICS - I
B. Tech. Semester - I (Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Class Work : 25 Marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination : 75 Marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total : 100 Marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Examination : 3 Hours</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT-I

PHYSICAL OPTICS:
Interference: Division of wave front-Fresnel’s Biprism, Division of amplitude – Newton’s rings, Michelson interferometer, applications.
Diffraction: Difference between Fraunhofer and Fresnel diffraction, Fraunhofer diffraction through a slit, Plane transmission diffraction grating and its spectra, dispersive and resolving powers.
Polarization: Polarised and unpolarized light, double refraction, Nicol prism, quarter and half wave plates, Plane, Elliptically & circularly polarised light, Polarimetry: Biquartz and Laurent's half-shade polarimeters.

UNIT-II

Introduction, Propagation of light in fibres, Types of fiber (pulse & continuous), numerical aperture, Modes of propagation in optical fibre, application of optical fibre.

ACOUSTIC OF BUILDINGS: Introduction, Reverberation, Sabine’s formula for reverberation time, Absorption coefficient and its measurements, factors affecting the architectural acoustics and their remedy, Sound absorbing materials.

UNIT-III

TRANSMISSION OF HEAT AND THERMAL RADIATION
Modes of transmission of heat, Thermal conductivity, Rectilinear flow of heat through a rod, Radial flow of heat through a spherical shell, determination of Thermal conductivity of good and bad conductors.

Black body, Emissive and Absorptive Powers, Wein’s Displacement Law, Kirchhoff’s Law, Stefan’s Law, Determination of Stefan’s Constant.

UNIT-IV

NUCLEAR & ELEMENTARY IDEA OF PARTICLE PHYSICS
Outline of interaction of charged particles and of Gamma-rays with matter. Counters: Gas filled counters (Ionization Chamber, Proportional Counter and G M Counter). Detector: Scintillation detector, Semiconductor detectors (p-n junction detector), Biological effects of nuclear radiation.

Introduction to elementary particles, Interaction in particle physics: strong, electromagnetic, weak and gravitational.

TEXT BOOKS :
1. A text book of Optics – Brij Lal and Subramanyam
2. Perspectives of Modern Physics - Arthur Beiser (TMH)
5. Engineering Physics by S.P. Taneja (Chand Pub.)

REFERENCE BOOKS:
1.. Physics Vol-I & II – Resnick & Halliday (Wiley Eastern)

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
The use of scientific non programmable calculator will be allowed in the examination.
UNIT-I
 Plant Layout, Principles of Plant Layout, Objectives of Layout, Types of Plant and shop layouts and their Advantages.

UNIT-II
Foundry: Introduction to Casting Processes, Basic Steps in Casting Process, Pattern, Types of Patterns, Pattern allowances, Risers, Runners, Gates, Molding Sand and its composition, Sand Preparation, Molding Methods, Core Sands and Core Making, Core Assembly, Mold Assembly, Melting (Cupola) and Pouring, Fettling, Casting Defects and Remedies. Testing of Castings

UNIT-III

UNIT-IV

TEXT BOOKS
REFERENCE BOOKS:
Manufacturing Process and Systems - Ostwald, Munoz, John Wiley.
Workshop Technology, Vol. 1, 2 & 3 - Chapman, WAJ, Edward Arnold.

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT-I
Thermodynamics - Second law, concept of entropy, entropy change for ideal gas, free energy and work functions, free energy change, chemical potential, Gibb’s Helmholtz equation, Clausius-Clapeyron equation. Related numerical problems with above topics.
Phase rule - Terminology, Derivation of Gibb’s Phase Rule equation, One component system (water system), Two components systems, system with Eutectic point (Pb-Ag), system with congruent melting point (Zn-Mg), system with incongruent melting point (Na-K), Applications of above systems. Elementary idea of Zone refining and Zone levelling.

UNIT-II
Water and its treatment - Hardness of water and its determination, units of hardness, alkalinity of water and its determination, related numerical problems, water softening, Ion-exchange process, mixed bed demineralisation, desalination of water by water by using different methods.
Corrosion and its prevention: Galvanic & concentration cell, dry and wet corrosion, Electrochemical theory of corrosion, Galvanic corrosion, Pitting corrosion, differential aeration corrosion, water line corrosion, stress corrosion, factor effecting corrosion, Preventing measures, electroless Plating of Ni and Cu.

UNIT-III
Polymers and Polymerization: Organic polymers, polymerisation, various types of polymerisation, effect of structure on properties of polymers, preparation properties and technical applications of thermoplastics (PE, PVC, PVA, Teflon), thermosets (PF, UF & MF) and elastomers (Synthetic Rubber including SBR, Buna-S, Buna-N, Thiokol & Polyurethanes), Inorganic polymers (general properties), Glass transition temperature, silicons
Composite Materials & their application: optical fibres, Fullerenes, organic electronic material, composite materials & their classification, constituents of composites, role of interface in composite performance and durability, fiber -Reinforced composite, advantage and applications of composites.

UNIT-IV
Lubricants and fuels: Friction, mechanism of lubrication, classification and properties of lubricants and selection of Lubricants, Definition and classification of fuel, Calorific value and methods of its determination.
Analytical methods: Thermal methods; Principle, method and application of TGA,DTA & DSC, interaction of E.M radiation with a molecule and origin of spectrum, Vibrational & electronic spectra (Experimental details are excluded), spectrophotometry, conductometric titrations, elementary discussion on Flame-photometery.

BOOKS:
4. Chemistry in Engineering & Tech., Vol.I & II, Rajaram, Kuriacose (TMH)
5. Engineering Chemistry, Shashi Chawla (Dhanpat Rai and co.)
7. Engineering chemistry, S.S Dara (S.chand & co.)

Note:
In the semester examination, the Examiners will set 08 questions in all selecting two from each unit. The candidates will be required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.
UNIT-1

D.C. Circuit Analysis: Basic concepts of electric circuits, Ohm’s Law, Independent energy sources, Dependent energy sources, passive elements, circuit properties, Kirchoff’s laws, applications of Kirchoff’s laws, Nodal and Loop methods of Analysis, Superposition Theorem, Thevenin’s Theorem, Norton’s Theorem, Reciprocity Theorem, Maximum Power Transfer Theorem, Millman’s Theorem, Star-Delta or delta-star transformation, Applications of network theorems P-spice for DC circuit analysis.

UNIT-II

A.C. Circuits: Sinusoidal signal, Phasors, polar & rectangular, exponential & trigonometric representations, Resistance, Inductance & Capacitance components, behavior of these components in A.C. circuits, Phasor relationship for circuit elements, Impedance & Admittance, instantaneous & peak values, average and RMS values, active power, reactive power, apparent power, power factor, complex power, behavior of AC series, parallel circuits, RL, RC & RLC A.C. circuits (series and parallel), Resonance-series and parallel R-L-C Circuits, Q-factor, cut-off frequencies & bandwidth.

UNIT-III

Three Phase Circuits: Phase and line voltages and currents, balanced star and delta circuits, power equation, measurement of power by two wattmeter method.

Measuring Instruments: Principle, Construction & working of moving coil type voltmeter & ammeter, moving iron type voltmeter & ammeter, Electrodynamic type wattmeter, single-phase induction type energy meter.

UNIT-IV

TEXT BOOKS:
1. Basic Electrical Engg (2nd Edition) : Kothari & Nagarath, TMH
2. Electrical Technology (Vol-I): B.L Theraja & A K Theraja, S.Chand
5. Basic Electrical Engineering, S.N. Singh, PHI

REFERENCE BOOKS:
1. Electrical Engineering Fundamentals: Deltoro, PHI
2. Basic Electrical Engineering (TMH WBUT Series), Abhijit Chakrabarti & Sudipta Nath, TMH
4. Introduction to Electrical Engineering, M.S. Naidu & S, Kamakshaiah, TMH
Note: In the semester examination, the examiner will set 08 questions in all selecting two from each unit. The candidates will be required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.
UNIT-I
Introduction to PC Operating Systems: Unix/Linux, DOS, Windows.

UNIT-II
Programming Languages and algorithms: Machine, Assembly and High Level Language; Assembler, Linker, Loader, Compiler, Interpreter, debuggers, Programming fundamentals: problem definition, algorithms, flowcharts and their symbols
Computer Networks: Basic concepts of Computer Networks, Working of Internet and its Major features. Network Topologies: Bus, Star, Ring, Hybrid, Tree, Complete, Irregular; Types of Networks: LAN, MAN and WAN.
Electronic Mail: advantages and disadvantages, e-mail addresses, message components, message composition, mailer features, E-mail inner workings, E-mail management, Newsgroups, mailing lists, chat rooms.

UNIT-III
Basics of ‘C’ Language
C Fundamentals, Basic data types, local and external variables and scope, formatted input/ output, expressions, selection statements, loops and their applications; arrays, functions, recursive functions, pointers and arrays.
Strings literals, arrays of strings; applications, Structures, Unions and Enumerations.

UNIT-IV
Advanced Features of ‘C’ Language
preprocessor directives, macro definition, conditional compilation, storage classes, type’s qualifiers, Low level programming (Bitwise operators, Bit fields in structures, other low level techniques), error handling, file operations(low level/high level).

REFERENCE BOOKS:
The C Programming Language by Dennis M Ritchie, Brian W. Kernigham, 1988, PHI.
Computer Fundamentals and Programming in C, Reema Theraja, Oxford
Information technology, Dennis P. Curtin, Kim Foley, Kunal Sen, Cathleen Morin, 1998, TMH
Theory and problem of programming with C, Byron C Gottfried, TMH

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
ME 103 B ENGINEERING GRAPHICS & DRAWING

B. Tech. Semester – I/II (Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>40 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>Examination</td>
<td>60 Marks</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>Duration of Examination</td>
<td>100 Marks</td>
</tr>
</tbody>
</table>

| | | | | | 3 Hours |

UNIT I

Projections of Straight Lines – Contained by both Reference Planes, Contained by one and inclined to other Reference Plane, Contained by one and Parallel to other Reference Plane, Parallel to both Reference Plane, Perpendicular to one of the Reference Planes, Inclined to one Plane but Parallel to the other Reference Planes, Inclined to both the Reference Planes, True Length of a Line and its Inclination with Reference Planes, Traces of a Line.

UNIT II

Projections of Planes – Parallel to one Reference Plane, Inclined to one Plane but Perpendicular to the other, Inclined to both Reference Planes.

Projections of Polyhedral Solids and Solids of Revolution- in simple positions with axis perpendicular to a Reference Plane, with axis parallel to both Reference Planes, with axis parallel to one Reference Plane and inclined to the other Reference Plane, Projections of sections of Prisms, Pyramids, Cylinders and Cones. True Shape of Sections of Solids.

UNIT III

Development - Development of Surfaces of various Solids objects.

Free Hand Sketching - Orthographic Views from Isometric, Views of Simple Machine Components such as Brackets, Bearing Blocks, Guiding Blocks and Simple Couplings and Pipe Joints.

UNIT IV

Orthographic Drawings - Screw Threads, Bolts, Nuts and Washers, Bolted, Riveted and Welded Joints

TEXT BOOKS

1. Engineering Drawing: MB Shah and BC Rana, Pearson

REFERENCE BOOKS

1. A Text Book of Engineering Drawing: RK Dhawan, S Chand & Company

Note:

1. For class work, the students shall be assigned to prepare at least ten drawing sheets covering all units and each topic of the syllabus.

2. For practical examination, the examiner will set a question paper containing total eight questions, two questions from each unit covering each topic of the syllabus; students are required to attempt five questions at least one from each unit.
ME 105 B ELEMENTS OF MECHANICAL ENGINEERING
B. Tech. Semester – I/II (Common for all Branches)
<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT-I
Thermodynamics: Elementary definitions in thermodynamics, fundamentals of first and 2nd law of thermodynamic- concept of internal energy, enthalpy and entropy, heat pump and refrigerator, elementary numerical problems.
Properties of Steam & Boilers: properties of steam, use of steam tables and mollier diagram, measurement of dryness fraction of steam, Carnot and Rankin cycle, elementary numerical problems. Classification of boilers, Comparison of water and fire tube boilers mounting and accessories with their functions, Constructional and operational details of Cochran and Babcock and Wilcox boilers, elementary numerical problems.
Steam Turbines and Condensers: Classification of turbines and their working principles, Types of condensers and their uses.

UNIT-II
I.C. Engines and Gas Turbines: Introduction, Classification, Constructional details and working of two-stroke and four-stroke diesel and petrol engines, Efficiency of Otto & Diesel cycles, Working principle of gas turbine, elementary numerical problems.
Refrigeration and air conditioning- rating of refrigeration machine, coefficient of performance, simple vapor compression cycle, fundamentals of air conditioning, use of Psychrometric charts.

UNIT-III
Water Turbines and Pumps: Introduction, Classification, Construction details and working principle of Pelton, Francis and Kaplan turbines, Classification of water pumps and construction detail & working principle of centrifugal pump.
Simple Lifting Machines: Definition of machine, Velocity ratio, Mechanical advantage, Efficiency, Laws of machines, Reversibility of machine, Wheel and axle, Differential pulley block, Single, double and triple start worm and worm wheel, Single and double purchase winch crabs, Simple and compound screw jacks, elementary numerical problems.

UNIT-IV
Introduction to Power transmission and Devices: Belt drive, Rope drive, Chain drive, Types of gear and Gear train, Types and function of clutches, Types and function of brakes.
Stresses and Strains: Introduction, Concept & types of Stresses and strains, Poison’s ratio, stresses and strains in simple and compound bars under axial loading, Stress-strain diagrams, Hooks law, Elastic constants & their relationships. Concept of shear force and bending moments in beams, elementary numerical problems.

TEXT BOOKS:
Engineering Thermodynamics – C.P. Arora, Pub. - TMH, New Delhi

REFERENCE BOOKS:

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
Note: Students will be required to perform 10 experiments in a semester.

LIST OF EXPERIMENTS

1. To find the wavelength of sodium light by using Newton's rings experimental setup.
2. To find the wavelength of sodium light by Fresnel's biprism experimental setup.
3. To find the wavelength of various colours of white light with the help of a plane transmission diffraction grating.
4. To find the refractive index and Cauchy's constants of a prism by using spectrometer.
5. To find the wavelength of sodium light by using Michelson interferometer.
6. To find the resolving power of a telescope.
7. To find the pitch of a screw using He-Ne laser.
8. To find the specific rotation of sugar solution by using a polarimeter.
9. To compare the capacitances of two capacitors by De'sauty bridge.
10. To find the flashing and quenching potentials of Argon and also to find the capacitance of unknown capacitor.
11. To study the photo conducting cell and hence to verify the inverse square law.
12. To find the temperature co-efficient of resistance by using platinum resistance thermometer and Callender and Griffith bridge.
13. To find the frequency of A.C. mains by using sonometer.
14. To find the velocity of ultrasonic waves in non-conducting medium by piezo-electric method.
15. To determine the value of Stefan’s constant.
16. To find the coefficient of thermal conductivity of a good conductor by Searle’s method.
17. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton method.

RECOMMENDED BOOKS:
1. Advanced Practical Physics – B.L. Worshnop and H.T. Flint (KPH)
LIST OF EXPERIMENTS / JOBS

1. To study different types of measuring tools/instruments used in metrology and determine least counts of vernier calipers, micrometers and vernier height gauges.
2. To study different types of machine tools (lathe, shaper, planer, slotter, milling, drilling machines).
3. To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.
4. To study different types of fitting tools and marking tools used in fitting practice.
5. To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.
6. To prepare joints for welding suitable for butt welding and lap welding.
7. To study various types of carpentry tools and prepare simple types of at least two wooden joints.
8. To prepare simple engineering components/ shapes by forging.
9. To prepare mold and core assembly, to put metal in the mold and fettle the casting.
10. To prepare horizontal surface/ vertical surface/ curved surface/ slots or V-grooves on a shaper/ planner.
11. To prepare a job involving side and face milling on a milling machine.
12. To study of CNC lathe, CNC Milling and EDM Machines.

Note:
1. At least ten experiments/ jobs are to be performed/ prepared by students in the semester.
2. At least 8 experiments/ jobs should be performed / prepared from the above list, remaining two may either be performed/ prepared from the above list or designed and set as per the scope of the syllabus of Manufacturing Processes.
B. Tech. Semester – I/II (Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>20 Marks</td>
<td>30 Marks</td>
<td>50 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

1. Determination of Ca++ and Mg++ hardness of water sample using EDTA solution.
2. Determination of alkalinity of water sample.
3. Determination of dissolved oxygen (DO) in the given water sample.
4. To find the melting and eutectic point for a two component system by using method of cooling curve.
5. Determination of viscosity of lubricant by red wood viscometer (No. 1 & No. 2).
6. To determine Flash point & Fire point of an oil by Pensky-Marten’s flash point apparatus and by Abel’s closed cup apparatus.
7. To prepare Phenol-formaldehyde and urea-formaldehyde resin.
8. To find out saponification No. of an oil.
9. Determination of concentration of KMnO4 solution spectrophotometerically.
10. Determination of strength of HCl solution by titrating it against NaOH solution conductometrically.
11. To determine amount of sodium and potassium in a given water sample by flame photometer.
12. Estimation of total iron in an iron alloy.

Suggested Books:

2. Essential of Experimental Engineering chemistry, Shashi Chawla, Dhanpat Rai Publishing Co.

Note:

1. The student will be required to perform 10 experiments/exercises from the above list and any other two experiments designed by the department based on the theory course (course code 101B Course Name Chemistry).
2. The students will be allowed to use non-programmable scientific calculator. However, sharing/exchange of calculator are prohibited in the examination.
3. Electronic gadgets including Cellular phones are not allowed in the examination.
LIST OF EXPERIMENTS

1. To verify KCL and KVL.
2. To verify Thevenin’s & Norton's Theorems.
3. To verify maximum power transfer theorem in D.C. Circuit.
4. To verify reciprocity theorem.
5. To verify Superposition theorem.
6. To study frequency response of a series R-L-C circuit and determine resonant frequency & Q-factor for various Values of R, L, C.
7. To study frequency response of a parallel R-L-C circuit and determine resonant frequency & Q-Factor for various values of R, L, C.
8. To perform direct load test of a transformer and plot efficiency Vs load characteristic.
9. To perform direct load test of a D.C. shunt generator and plot load voltage Vs load current curve.
10. To study various type of meters.
12. Measurement of power in a three phase system by two watt meter method.

Note:

1. At least 10 experiments are to be performed by students in the semester.
2. At least 8 experiments should be performed from the above list; remaining two experiments may either be performed from the above list or designed and set by the Dept. as per the scope of the syllabus of EE101B.
LIST OF PRACTICAL PROBLEMS

1. Write a program to find the largest of three numbers. (if-then-else)
2. Write a program to find the largest number out of ten numbers (for-statement)
3. Write a program to find the average male height & average female heights in the class (input is in form of sex code, height).
4. Write a program to find roots of quadratic equation using functions and switch statements.
5. Write a program using arrays to find the largest and second largest no. out of given 50 nos.
6. Write a program to multiply two matrices.
7. Write a program to sort numbers using the Quicksort Algorithm.
9. Write a program to check that the input string is a palindrome or not.
10. Write a program to read a string and write it in reverse order.
11. Write a program to concatenate two strings.
12. Write a program which manipulates structures (write, read, and update records).
13. Write a program which creates a file and writes into it supplied input.
14. Write a program which manipulates structures into files (write, read, and update records).

Note: At least 5 to 10 more exercises to be given by the teacher concerned
ME 109 B ELEMENTS OF MECHANICAL ENGINEERING LAB.

B. Tech. Semester – I/II (Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>20 Marks</td>
<td>30 Marks</td>
<td>50 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

1. To study Cochran & Babcock & Wilcox boilers.

2. To study the working & function of mountings & accessories in boilers.

3. To study 2-Stroke & 4-Stroke diesel engines.

4. To study 2-Stroke & 4-Stroke petrol engines.

5. To calculate the V.R., M.A. & efficiency of single, double & triple start worm & worm wheel.

6. To calculate the V.R., M.A. & efficiency of single & double purchase winch crabs.

7. To draw the SF & BM diagrams of a simply supported beam with concentrated loads.

8. To study the simple & compound screw jacks and find their MA, VR & efficiency.

9. To study the constructional features & working of Pelton Turbine.

10. To prepare stress-strain diagram for mild steel & cast iron specimens under tension and compression respectively on a Universal testing machine.

Note:

1. Total ten experiments are to be performed in the Semester.

2. At least eight experiments should be performed from the above list. Remaining three experiments should be performed as designed & set as per the scope of the syllabus of ME – 101: Elements of Mechanical Engineering.
MATH102B MATHEMATICS - II

B. Tech. Semester - II (Common for all Branches)

L T P Credits
3 1 -- 4

Class Work : 25 Marks
Examination : 75 Marks
Total : 100 Marks
Duration of Examination : 3 Hours

UNIT - I

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER: Complete solution, complementary function and particular integral, method of variation of parameters to find particular integral, Cauchy's and Legendre's linear equations, simultaneous linear equations with constant coefficients.

UNIT-II
LAPLACE TRANSFORMS AND ITS APPLICATIONS: Laplace transforms of elementary functions, properties of Laplace transforms, existence conditions, transforms of derivatives, transforms of integrals, multiplication by t^n, division by t. Evaluation of integrals by Laplace transforms. Laplace transform of Unit step function, unit impulse function and periodic function. Inverse transforms, convolution theorem, application to linear differential equations and simultaneous linear differential equations with constant coefficients.

UNIT-III

UNIT-IV
FOURIER SERIES AND FOURIER TRANSFORMS: Euler’s formulae, conditions for a Fourier expansion, change of interval, Fourier expansion of odd and even functions, Fourier expansion of square wave, rectangular wave, sawtoothed wave, half and full rectified wave, half range sine and cosine series. Fourier integrals, Fourier transforms, Shifting theorem (both on time and frequency axes), Fourier transforms of derivatives, Fourier transforms of integrals, Convolution theorem, Fourier transform of Dirac-delta function.

TEXT BOOKS:
1. Advanced Engg. Mathematics F Kreyszig

REFERENCE BOOKS:

Note:
1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT-I

ELECTRODYNAMICS & QUANTUM PHYSICS:-
Introduction, Displacement current, Equation of continuity, Gauss’s Law in dielectric, applications of Gauss’s law, Maxwell’s equations (both differential and integral form), plane e.m. wave equations in free space, dielectric and conducting medium; Poynting vector.

UNIT-II

CRYSTAL STRUCTURE
Space Lattice, unit cell and translation vectors, Miller indices, Bravis lattice structure in 3D, simple crystal structure (NaCl, ZnS and CsCl2), Elementary idea of reciprocal lattice, Ewald Construction, Experimental x-ray diffraction method, Laue method, powder Method.

FREE ELECTION THEORY
Elements of classical free electron theory, Drude’s Theory of Conduction and its limitations, quantum theory of free electrons, Fermi level, Density of states, Fermi-Dirac distribution function, Thermionic emission, Richardson's equation.

UNIT-III

BAND THEORY OF SOLIDS
Origin of energy bands, Kronig, Penney Model (qualitative), E-K diagrams, Brillouin Zones, Concept of effective mass and holes, Classification of solids into metals, Semiconductors and insulators, Fermi energy and its variation with temperature, Conduction in Intrinsic and Extrinsic Semiconductors. Hall Effect and its Applications.

UNIT-IV

SUPERCONDUCTIVITY & NANOSCIENCE
Introduction to superconductivity, Critical temperature, Meissner Effect, Types of Superconductor, London Equations, penetration depth and coherence length, BCS Theory (qualitative ideas), High temperature superconductors.
Concept of Nano-materials, Size dependence of band gap, Top-down and bottom-up approach for preparing nano-materials, MEMS & NEMS, Properties and applications of Fullerene, Graphene, CNT, Nanowires, Nano-composites, Quantum dots.

TEXT BOOKS :
2. Quantum Mechanics – Ghatak & Loknathan.
6. Engineering Physics by S.P. Taneja (Chand Pub.)

REFERENCE BOOKS :
1. Introduction to Solid State Physics (VII Ed.) - Charles Kittel (John Wiley).
2. Quantum Mechanics - Powell and Crasemann (Oxford & IBH)
3. Classical Electrodynamics by S.P. Puri (Narosa)

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
ECE 102B BASICS OF ELECTRONICS ENGINEERING
B. Tech. Semester – II (OPTIONAL- Common for all Branches)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT I
Semiconductor Physics, Diodes and Applications: Basic concepts, intrinsic and extrinsic semiconductors, diffusion and drift currents, Hall effect and its applications—pn junction under open circuit, reverse bias and forward bias conditions, p-n junction in the breakdown region, ideal diode, types of diodes—zener diode, varactor diode, LED and photodiode. Rectifier (half wave and full wave).
Amplifiers: Introduction of different types of BJT amplifiers & their characteristics.

UNIT II
Operational Amplifiers: OP-amps, its characteristics, inverting, non-inverting, summing, averaging, scaling, difference, integrator and differentiator amplifiers.
Power Supplies: Introduction and working of switched mode power supply (SMPS), voltage regulator.

UNIT III
Digital Electronics: Binary, Octal and Hexadecimal number system and conversion, Boolean algebra, truth tables of logic gates AND, OR, NOT, EX-OR, EX-NOR, NAND, NOR AND their implementation using diodes transistors, switches and lamps, Universal gates.
Electronic Instruments: Transducers, Role, importance and applications of general purpose test instruments viz. multi meter (digital and analog), cathode ray oscilloscope (CRO), function/ signal generator.

UNIT IV
Communication System: Modulation, need of modulation, Block diagram of basic communication system, overview of AM, FM and PM.

REFERENCE BOOKS:
- Boylestad and Nashelesky, “Electronic Devices and Circuit Theory”, Pearson Education India, New Delhi
- Ramesh S. Gaonkar, “Microprocessor Architecture, Programming, and Applications with the 8085”, Penram International Publishing.

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT – I

Introduction: Nature and scope of Biotechnology.

Cell Structure and Function: Prokaryotes and Eukaryotes- cell wall, cell membrane, nucleus, mitochondria, chloroplast, ribosome, vacuoles, bacteria and viruses: brief descriptions.

Biomolecules: A brief account of structure and functions of carbohydrates, lipids, proteins.

UNIT – II

Cell Division: Mitosis and meiosis

Genes and chromosomes: Classical- Mendel’s laws and chromosomes, nature of genetic material, DNA and RNA as genetic material, concept of organization of genetic material into chromosomes.

DNA replication: DNA polymerases, replication mechanism.

UNIT – III

Gene Expression: Central dogma, genetic code, gene expression-a brief account of transcription and translation, housekeeping genes, mutations and their molecular basis.

Genetic Engineering: An introduction to genetic engineering: cloning (vectors, enzymes), DNA and genomic libraries, transgenics, DNA fingerprinting, genomics.

UNIT – IV

Applications of Biotechnology: Bioprocess and fermentation technology, cell culture, enzyme technology, biological fuel generation, single cell protein, sewage treatment, environmental biotechnology, biotechnology and medicine, biotechnology in agriculture & forestry industry, food and beverage technology, production of biological inventions, safety in biotechnology.

TEXT/ REFERENCE BOOKS:

Biotechnology, Smith, Cambridge Press.

Modern Concepts of Biotechnology, H. D. Kumar, Vikas Publishing House (P) Ltd.

Elements of Biotechnology, P. K. Gupta, Rastogi Publications.

Note:

In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.

The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
OBJECTIVE

To train students to have proficiency in oral communication through interpersonal communicative situations.

COURSE CONTENT

UNIT I

Essentials of Speaking Skills:

Familiarity with phonetic sound symbols; Transcription of simple words using International Phonetic Alphabet; Use of dictionary to cultivate standard pronunciation and develop phonetic discrimination

UNIT II

Speaking Skills:

Need and Significance of Effective Oral Communication; Practice of Conversation – Interpersonal and Telephonic Conversation; Formal Group Discussion

UNIT III

Non-Verbal Elements in Oral Communication Skills:

Reading Face, eyes, gesture and body posture, time, space and culture in communicative situations; practicing verbal and non-verbal communication (Body Language) to acquire effective Oral communication;

UNIT IV

Listening Skills:

Essentials of Good Listening, Types of Listening, Barriers in Effective listening, Exercises in

Listening to Talk Shows, Speech Reviews; Practice in English Sounds and

Speech using RP/MRP

RECOMMENDED READING

UNIT - I
Materials for Construction: Stones, Sands, Lime, Bricks, Timber, Steel their Classification and Properties. Different Types of Cement and their Properties, manufacturing of Cement, Concrete, and properties of Concrete, Ingredient of Concrete and Their Functions
Component parts of a Building, Foundation, Masonry Works, Doors and Windows, Floors, Roofs, DPC, Building Services

UNIT - II
Surveying, Introduction to Surveying: Definition, importance, classification of surveys, Principle, Leveling: definitions of terms used in leveling, different types of levels, Contours, Definition, representation of reliefs, horizontal equivalent, contour interval, characteristics of contours, methods of contouring, contour gradient, uses of contour maps, Introduction to GIS, GPS and Remote sensing.

UNIT - III
Transportation: Various modes and means of transportation, Different types of transport systems, Importance of road transport, History of Road Development, Indian Road Congress. Main features of 20 years road development plans in India, PMGSY
Sources of power, estimation of water power, water budget equation, necessity and importance of harnessing small hydro power plants, Dams, Types of Dams, Location and Impact assessment of a Dam project.

UNIT - IV
Geotechnical Engineering: History and its applications, Soil Properties, Classification of Soil, Geotechnical and Geophysical investigation of Soil.
Irrigation Engineering: Necessity, advantages, disadvantages, impact of irrigation on human environment, need and development of irrigation in India.

TEXT BOOKS:
1. Basic Civil Engineering, Satheesh Gopi, Pearson.
2. Basic Civil Engineering, Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kr. Jain, Firewall Media

REFERENCE BOOKS:
1. Surveying by Prof. N. Singh, Tata McGraw Hill, New Delhi
2. Basic Civil Engineering, Rakesh Beohar, Firewall Media
4. Water Resources Engineering by Linseley and Franzini

Note:
1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
PHY 104B PHYSICS LAB. - II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>20 Marks</td>
<td>30 Marks</td>
<td>50 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Note: Students will be required to perform 10 experiments in a semester.

LIST OF EXPERIMENTS

1. To find the low resistance by Carey - Foster's bridge.
2. To find the resistance of a galvanometer by Thomson’s constant deflection method using a post office box.
3. To find the value of high resistances by Substitution method.
4. To find the value of high resistances by Leakage method.
5. To study the characteristics of a solar cell and to find the fill factor.
6. To find the value of e/m for electrons by Helical method.
7. To find the ionisation potential of Argon/Mercury using a thyratron tube.
8. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
9. To study the characteristics of (Cu-Fe, Cu-Constantan) thermo couple.
10. To find the value of Planck's constant by using a photoelectric cell.
11. To find the value of co-efficient of self-inductance by using a Rayleigh bridge.
12. To find the value of Hall Co-efficient of semi-conductor.
13. To study the V-I characteristics of a p-n diode.
14. To find the band gap of intrinsic semi-conductor using four probe method.
15. To calculate the hysteresis loss by tracing a B-H curve.
16. To verify the Truth Table of various Logic Gates.

RECOMMENDED BOOKS :

1. Advanced Practical Physics – B.L. Worshnop and H.T. Flint (KPH)
The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/her performance / achievements in different walks of life.

The evaluation will be made by the panel of experts/teachers, preferably interdisciplinary to be appointed by the Dean of the concerned faculty/ Director of the concerned affiliated college. A Faculty Counselor will be attached to a group of students which will remain associated with him/her during the entire period of the degree program in the University. Each faculty member will serve as a faculty counselor. They will act like a local guardian for the students associated with him/her and will help them in terms of career guidance, personal difficulties.

A. The student will present a written report before the committee with following in view:

The student will present before the committee his/her achievements during the current academic session in the form of a written report highlighting followings:

I. Academic Performance
II. Extra Curricular Activities /Community/Hostel work (8 Marks)
III. Technical Activities/Industrial,Educational Tours (8 Marks)
IV. Sports Games (4 Marks)
V. Moral Values & Ethics (10 Marks)

NOTE: Report submitted by the students should be typed on both sides of the paper.

B. A student will support his/her achievement and verbal & communicative skill through presentation before the committee. (20 Marks)

C. Moral values & Ethics

Syllabus - Introduction to Value Education. Understanding ethics, value system, happiness, prosperity
A minor test/Quiz will be conducted and It will be the duty of the concerned teacher assigned to teach
Moral values & Ethics to submit the awards to respective chairman of the department / Director/Principal.

The evaluation of this course will be made by the following Committee.

University Departments:
1. Chairperson of the Department (Chairman)
2. Senior Most Faculty Counselor (Member)
3. Vice-Chancellor's Nominee (Member)

Affiliated Colleges:
1. Director/Principal (Chairman)
2. Head of the Department/Sr. Faculty (Member)
3. External Examiner to be appointed by the University (Member)

Note: Remuneration will be paid to the external examiner only (at par with the other practical examinations).
UNIT-I

UNIT-II

Meaning of Demand, Individual and Market demand schedule, Law of demand, shape of demand curve. Elasticity of demand, measurement of elasticity of demand, factors effecting elasticity of demand, practical importance & application of the concept of elasticity of demand. Various concepts of cost-Fixed cost, variable cost, average cost, marginal cost, money cost, real cost, opportunity cost. Shape of average cost, marginal cost, total cost etc. in short run and long run.

UNIT III

Meaning of production and factors of production; Law of variable proportions, Law of Return to Scale, Internet and External economics and diseconomies of scale. Meaning of Market, Type of Marker- perfect Competition, Monopoly, Oligopoly, Monopolistic competition (Main features of these markers)

UNIT-IV

TEXT BOOKS:
1. Ahuja H.L ”Micro Economic Theory” S. Chand Publication, New Delhi
2. Dewett K.K “Modern Economic Theory” S. Chand Publication, New Delhi

REFERENCE BOOKS:
2. Chopra P.N “Principle of Economics” Kalyani Publishers, Delhi

Note:

In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I
Basic Terminology: Elementary Data Organization, Data Structure Operations
Arrays: Array Definition and Analysis, Representation of Linear Arrays in Memory, Traversing of Linear Arrays, Insertion and Deletion, Single Dimensional Arrays, Two Dimensional Arrays, Multidimensional Arrays, Sparse Matrix.

UNIT II
Linked Lists: Singly linked lists: Representation of linked lists in memory, Traversing, Searching, Insertion into, Deletion from linked list, Polynomial Addition, Header Linked List, Doubly linked list, generalized list.

UNIT III
Trees: Basic Terminology, Binary Trees and their representation, expression evaluation, Complete Binary trees, Extended binary trees, Traversing binary trees, Searching, Insertion and Deletion in binary search trees(with and without recursion), AVL trees, Threaded trees, B trees.
Graphs: Terminology and Representations, Graphs & Multigraphs, Directed Graphs, Sequential representation of graphs, Adjacency matrices, Transversal Connected Component and Spanning trees, Shortest path

UNIT IV

REFERENCE BOOKS:
1. R.L. Kruse, B.P. Leary, C.L. Tondo, Data structure and program design in C, PHI
6. Horowitz, Ellis and Sahni, Sartaj; Fundamentals of Data Structures, Universities Press.
7. Theory and Problems of Data Structures by Jr. SymourLipschetz, Schaum’s outline by TMH.
10. Data Structures and Algorithms, James A. Storer, Springer

Note:
1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I

Numerical errors: Round-off error, Truncation error, Absolute & relative errors, error propagation.

Nonlinear Equations: Bisection method, fixed point iteration, Newton’s method, Newton’s method for nonlinear system of equations.

UNIT II

Finite differences and Interpolation: Forward, backward & central differences, Factorial notation, averaging operator, shift operator and relationship between various type of operators, Newton’s forward & backward interpolation, central difference interpolation formulas, Interpolation with unequal interval, Lagrange interpolation formula, Hermite interpolation.

UNIT III

UNIT IV

Test of significance for large samples, Student’s t-distribution (application only), chi-square test of goodness of fit.

TEXT BOOKS:

3. Numerical Methods: E Balagurusamy, TMH

Note:

1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT -I

Set Theory: Introduction to set theory, Set operations, Algebra of sets, Duality, Finite and Infinite sets, Cartesian Product, Relations, Representation of relations, Types of relation, Equivalence relations and partitions, Partial ordering relations and lattices, Function and its types, Composition of function and relations

UNIT-II

Graphs And Trees: Introduction to graphs, Directed and Undirected graphs, Homomorphic and Isomorphic graphs, Subgraphs, Cut points and Bridges, Multigraph and Weighted graph, Paths and circuits, Shortest path in weighted graphs, Eulerian path and circuits, Hamilton paths and circuits, Planar graphs, Euler’s formula, Trees, Spanning trees, Binary trees and its traversals.

UNIT-III

Propositional logic: Basic operations: AND(^), OR(v), NOT(~), Truth value of a compound statement, propositions, tautologies, contradictions, Validity of Arguments

Group theory: Definition and examples of a monoid, Semigroup, Groups and rings, Homomorphism, Isomorphism and Automorphism, Subgroups and Normal subgroups, Cyclic groups, Cosets, Lagrange’s theorem.

UNIT-IV

Recursion And Recurrence Relation: linear recurrence relation with constant coefficients, Homogeneous solutions, Particular solutions, Total solution of a recurrence relation using generating functions.

Techniques Of Counting: Permutations with and without repetition, Combination.

TEXT BOOK:
• Elements of Discrete Mathematics C.I. Liu, 1985, McGraw Hill

REFERENCE BOOKS:

Note: In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I

FUNDAMENTALS OF DIGITAL TECHNIQUES:

COMBINATIONAL DESIGN USING GATES:
Design using gates, Simplifications of SOP and POS Boolean Expressions, Karnaugh map up to four variables.

UNIT II

COMBINATIONAL DESIGN USING MSI DEVICES:
Multiplexers and Demultiplexers and their use as logic elements, Decoders, Adders / Subtractors, BCD arithmetic circuits, Encoders, Code Converters, Decoders / Drivers for display devices.

SEQUENTIAL CIRCUITS:

UNIT III

DIGITAL LOGIC FAMILIES:
Switching mode operation of p-n junction, bipolar and MOS devices. Bipolar logic families:RTL, DTL, DCTL, HTL, TTL, ECL, MOS, and CMOS logic families. Tristate logic, Interfacing of CMOS and TTL families.

SEMICONDUCTOR MEMORY DEVICES:
Memory organizations, Characteristics of memory devices, Classifications of semiconductors memories.

UNIT IV

A/D AND D/A CONVERTERS:
Sample and hold circuit, weighted resistor and R-2R ladder D/A Converters, specifications for D/A converters. A/D converters: Quantization, parallel -comparator, successive approximation, counting type, dual-slope ADC, specifications of ADCs.

PROGRAMMABLE LOGIC DEVICES: PLA, PAL, FPGA and CPLDs.

TEXT BOOKS:
1. Modern Digital Electronics(Edition III) : R. P. Jain; TMH
2. Digital Electronics :Green; Pearson

REFERENCE BOOKS:
1. Digital Integrated Electronics : Taub & Schilling; MGH
2. Digital Principles and Applications : Malvino & Leach; McGraw Hill.
3. Digital Design : Morris Mano; PHI.

NOTE:
In the Semester examination, the examiner will set 08 questions in all selecting two from each unit. The candidates will be required to attempt five questions in all, atleast one from each unit.
UNIT I

Introduction to Communication Systems:

Noise:
Sources of Noise, External & Internal Noise, Noise Calculations, Noise Figure, Noise Figure Calculation, Noise Temperature, Noise in Communication Systems, Band Pass Noise Model, Cascaded States & its Noise Figure Calculation, Signal in presence of Noise, Pre-Emphasis & De-Emphasis, Noise Quieting Effect, Capture Effect, Noise in Modulation Systems.

UNIT II

Angle Modulation:
Basic definition & derivation for Modulation & Modulation Index, Generation of FM waves, Comparison between PM & FM, Frequency Spectrum of FM, B.W. & required spectra, Types of FM, vector representation of FM, Universal Curve, Multiple FM, Demodulation of FM waves, Demodulation of PM waves, Comparison between AM & FM.

UNIT III

UNIT IV

Pulse Analog Modulation: Sampling theory, TDM, FDM, PAM, PWM, PPM, Modulation & Demodulation techniques of above all.

TEXT BOOKS
2. Electronic Communication Systems By Kennedy – TMH
3. Communication Systems By Singh & Sapre – TMH
4. Electronic Communication, By Roody Coolen – Pearson
5. Analog Communication By P. Chakarbari – DR & Co.

NOTE:
In the Semester examination, the examiner will set 08 questions in all selecting two from each unit. The candidates will be required to attempt five questions in all, atleast one from each unit.
List of Practical:

1. Write a program to perform binary search in an array.

2. Write a program to perform binary search using recursion.

3. Write a program to perform linear search in 2D array.

4. Write a program to perform various operations on matrices.

5. Write a program to swap two nos. using calls by value and reference.

6. Write a program to implement bubble sort.

7. Write a program to implement insertion sort.

8. Write a program to implement selection sort.

9. Write a program of link list implementation of a stack.

10. Write a program of link list implementation of a queue.

11. Write a program of array implementation of a stack.

12. Write a program of array implementation of a queue.

13. Write a program to search an element in a link list.

14. Write a program to maintain a link list.

15. Write a program to implement BST

Note: Teacher may give 5 to 10 more exercises based on course CSE 201B
<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Work</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Examination</td>
<td>30 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Write Programs in ‘C’ Language:

1. To deduce error involved in polynomial equation.

2. To Find out the root of the Algebraic and Transcendental equations using Bisection, Regula-falsi, Newton Raphson and Iterative Methods.

3. To implement Newton’s Forward and Backward Interpolation formula.

4. To implement Gauss Forward and Backward, Bessel’s, Sterling’s and Evertt’s Interpolation formula.

5. To implement Newton’s Divided Difference and Langranges Interpolation formula.

6. To implement Numerical Differentiations.

7. To implement Numerical Integration using Trapezoidal, Simpson 1/3 and Simpson 3/8 rule.

8. To implement Least Square Method for curve fitting.

9. To draw frequency chart like histogram, frequency curve and pie-chart etc.

10. To estimate regression equation from sampled data and evaluate values of standard deviation, t-statistics, regression coefficient, value of R2 for at least two independent variables.
ECE221B DIGITAL ELECTRONICS LAB

B. Tech. Semester –III (CSE,ECE,EE,EEE, CSE, IC and BME, AEI in 4th Sem.)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>20 Marks</td>
<td>30 Marks</td>
<td>50 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS:

1. Study of TTL gates - AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR
2. To realize the universal property of NAND gate
3. To realize the universal property of NOR gate
5. To verify the operation of Multiplexer & De-multiplexer.
6. To verify the operation of Comparators.
7. To perform Half adder and Full adder
8. To perform Half Subtractor and Full subtractor.
10. To verify the operation of bi-directional shift register.
11. To study analog to digital and digital to analog converter
12. To design & verify the operation of 3 bit synchronous counter.
13. To design & verify the operation of synchronous UP/DOWN decade counter using JK flip flop & derive a seven segment display using the same.
14. To design & verify the operation of asynchronous UP/DOWN decade counter using JK flip flop & derive a seven segment display using the same.
15. Design a 4-bit shift register, verify its operation and verify the operation of a ring counter and a Johnson counter.

Note:-

1. Total ten experiments are to be performed in the semester.
2. At least seven experiments should be performed from the above list. Remaining three experiments should be performed as designed and set by the concerned institution as per the scope of the syllabus.
ENVIRONMENTAL STUDIES FIELD WORK
B. Tech. Semester -III/IV (Common for all Branches) Gr-B

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
<th>Field Work</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>25Marks</td>
</tr>
</tbody>
</table>

FIELD WORK:

- Visit to a local area to document environmental assets – river/ forest/ grassland/ hill/ mountain.
- Visit to a local polluted site-Urban/ Rural/ Industrial/ Agricultural.
- Study of common plants, insects, birds.
- Study of simple ecosystems – pond, river, hill slopes, etc. (Field work equal to 5 lectures hours).

Note: The awards of this paper shall not be counted in the award of the Degree/DMC.
Each student has to undergo a workshop at least 4 weeks (80-100 hours) at the end of II semester during summer vacations. **Out of the four weeks, two weeks would be dedicated to general skills and two weeks training for specialized discipline/department.** The evaluation of this training shall be carried out in the III semester.

LIST OF JOBS TO BE CARRIED OUT DURING THIS PERIOD

1. To study and prepare different types of jobs on machine tools (lathe, shaper, planer, slotter, milling, drilling machines).
2. To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.
3. To prepare joints for welding suitable for butt welding and lap welding.
4. To study various types of carpentry tools and prepare simple types of wooden joints.
5. To prepare simple engineering components/shapes by forging.
6. To prepare mold and core assembly, to put metal in the mold and fettle the casting.
7. To study of CNC lathe, CNC Milling and EDM Machines.
8. Any work assigned in electrical workshop, computer hardware/language lab, electronics workshop, biomedical hardware, automobile workshop etc.

This student will prepare job(s)/project as an individual or in a group using workshop in house infrastructure.

The student shall submit a typed report.

Training will be evaluated on the spot out of 20 marks.

The report will be evaluated in the III Semester by a Committee consisting of two teachers.

The student will interact with the committee through presentation to demonstrate his/her learning. The basis of evaluation will primarily be the knowledge and exposure of students on different kinds of machines/instruments/tools/skills etc. The committee will evaluate out of 30 marks.

The committee shall submit the awards out of 50 marks.
UNIT – I
The Multidisciplinary nature of environmental studies, Definition, scope and importance.
Need for Public awareness

UNIT – II
NATURAL RESOURCES:
Renewable and non-renewable resources:
Natural resources and associated problems.
b) Forest resources: Use and over-exploitation: deforestation, case studies, Timber exploitation, mining, dams and their effects and forests tribal people.
c) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
d) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
e) Food resources: World food problems, changes, caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
f) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources; case studies.
g) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
• Role of an individual in conservation of natural resources.
• Equitable use of resources for sustainable lifestyles.

UNIT- III
ECOSYSTEMS:

• Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids.
• Introduction, types, characteristic features, structure and function of the following ecosystem:
 a) Forest ecosystem, Grassland ecosystem, Desert ecosystem.
 b) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

UNIT- IV
Biodiversity and its conservations:

• Introduction – Definition: Genetic, species and ecosystem diversity.
• Biogeographically classification of India.
• Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values.
• Biodiversity at global, National and local levels.
• India as a mega-diversity nation.
• Hot-spots of biodiversity.
• Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
• Endangered and endemic species of India.

UNIT - V
ENVIRONMENTAL POLLUTION:
Definition, causes, effects and control, measures of:
Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal Pollution, Nuclear hazards
• Solid waste management: Causes effects and control measures of urban and industrial
• Role of an individual in prevention of pollution.
• Pollution case studies.
• Disaster management: Floods, earthquake, cyclone and landslides.

UNIT - VI SOCIAL ISSUES AND THE ENVIRONMENT:

a) From unsustainable to sustainable development
b) Urban problems related to energy
c) Water conservation, rain water harvesting, watershed management
d) Resettlement and rehabilitation of people; its problems and concerns, case studies
e) Environmental ethics: Issues and possible solutions
f) Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Case studies
g) Wasteland reclamation, Consumerism and waste products
h) Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act
i) Issues involved in enforcement of environmental legislation, Public awareness

Role of Information Technology in Environment and human health.
Case Studies.

REFERENCES:
7. Down to Earth, Centre for Science and Environment ®.

(M) Magazine (R) Reference (TB) Textbook

Note:
1. Examiner will set eight questions. Students will be required to attempt five Questions.
2. The awards of this paper shall not be counted in the award of the Degree/DMC.
UNIT I:
DBMS an overview, Advantages of DBMS, Network, Hierarchical and Relational Model, Levels of abstraction, Data Independence, Data Models, Instances and schemes, Data independence Structures of a DBMS, Application Programmers & Data Base administrators – their function, Transaction Management Entity Relationship Model: Entities, Attributes and Entity Sets, Relation and Relationships sets, mapping and participation constraints, Aggregation, Specialization and Generalization, Features of E-R Model.

UNIT-II
Relational Model: Introduction to relational model, Integrity constraints over relations, Enforcing Data Integrity, Integrity Constraints, Relational Data, Logical Data Base Design, Reduction of E-R Diagrams to relations, Introduction to views, Querying Relational Algebra and Relational Calculus, Operations on Relational Algebra, Operations on Relational Calculus, Tuple Relational Calculus, Domain Relational Calculus

UNIT-III
Database Design, Data Redundancy, Introduction to Schema Refinement, Functional Dependencies, Normal Forms-First, Second, Third, Boyce code, Fourth and Multivalued Dependencies

Structured Query Language: Basic SQL Queries, Nested Queries, Aggregate operator, Null Values, implementation of Various Relational Algebra operations, Embedded SQL

UNIT-IV
Transaction management: ACID Properties, Transaction states, Concurrency control: Concurrency Control –Overview, Concurrency control problems, Locks, Locking Protocols, Deadlocks, Serializability,
Recovery System: Types of Failures, Recovery Techniques, ARIES

TEXT BOOKS

REFERENCE BOOKS

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
CSE204B OBJECT ORIENTED PROGRAMMING
B. Tech. Semester – IV(Information Technology)
(Common with CSE,AEI 4th Sem and ECE,IC,EEE, 5th Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT-I
C++ Standard Library, Preprocessor Directives, illustrative Simple C++ Programs. Header Files and Namespaces, library files. Concept of objects, Object Oriented Analysis & Object Modeling techniques.
Object Oriented Concepts: Introduction to Objects and Object Oriented Programming, Encapsulation (Information Hiding), Access Modifiers: Controlling access to a class, method, or variable (public, protected, private, package), Other Modifiers, Polymorphism: Overloading, Inheritance, Overriding, Abstract Classes, Reusability Classes and Data Abstraction: Introduction, Structure Definitions, Accessing Members of Structures, Class Scope and Accessing Class Members, Controlling Access Function And Utility Functions, Initializing Class Objects: Constructors.

UNIT-II
Using Destructors, Classes: Const(Constant) Object And Const Member Functions, Object as Member of Classes, Friend Function and Friend Classes, Using This Pointer, Dynamic Memory Allocation with New and Delete, Static Class Members, Container Classes and iterators, Function overloading.

UNIT-III
Inheritance: Introduction, Inheritance: Base Classes And Derived Classes, Protected Members, Casting Base Class Pointers to Derived- Class Pointers, Using Member Functions, Overriding Base -Class Members in a Derived Class, Public, Protected and Private Inheritance, Using Constructors and Destructors in derived Classes, Implicit Derived Class Object To Base Class Object Conversion, Composition Vs. Inheritance.
Introduction to Virtual Functions, Abstract Base Classes And Concrete Classes, Polymorphism, New Classes And Dynamic Binding, Virtual Constructors, Polymorphism, Dynamic Binding.

UNIT-IV
Files and I/O Streams and various operation on files. Stream Input/Output Classes and Objects, Stream Output, Stream Input, Unformatted I/O (with read and write), Stream Manipulators, StreamFormatStates, StreamErrorStates.
Templates & Exception Handling: Function Templates, Overloading Template Functions, Class Template, Class Templates and Non-Type Parameters, Templates and Inheritance, Templates and Friends.
Templates and Static Members: Introduction, Basics of C++ Exception Handling: Try Throw, Catch, Throwing an Exception: Catching an Exception, Re-throwing an Exception, Exception specifications, Processing Unexpected Exceptions, Constructors, Destructors and Exception Handling, Exceptions and Inheritance.

TEXT BOOKS :-
2. Programming with C++ By D Ravichandran, 2003, T.M.H

REFERENCE BOOKS :-
2. Computing Concepts with C++ Essentials by Horstmann, 2003, John Wiley,
3. The Complete Reference in C++ By Herbert Schildt, 2002, TMH.

Note: In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT-I

Introduction: Introduction to Operating System Concepts (including Multitasking, multiprogramming, multi user, Multithreading etc.), Types of Operating Systems: Batch operating system, Time-sharing systems, Distributed OS, Network OS, Real Time OS; Various Operating system services, architecture, System programs and calls.

UNIT-II

Process Management: Process concept, process scheduling, operation on processes; CPU scheduling, scheduling criteria, scheduling algorithms - First Come First Serve (FCFS), Shortest-Job-First (SJF), Priority Scheduling, Round Robin (RR), Multilevel Queue Scheduling.

UNIT-III

Memory Management: Logical & Physical Address Space, swapping, contiguous memory allocation, non-contiguous memory allocation paging and segmentation techniques, segmentation with paging; virtual memory management - Demand Paging & Page-Replacement Algorithms; Demand Segmentation.

File System: Different types of files and their access methods, directory structures, various allocation methods, file protection, concurrency control, Introduction to distributed file system.

UNIT-IV

Process Synchronization & Deadlocks: Critical Section Problems, semaphores; methods for handling deadlocks- deadlock prevention, avoidance & detection; deadlock recovery.

Unix Operating System: Unix system call for processes and file system management, Shell interpreter,

Linux Operating System: Components of Linux, Processes and threads, Interprocess Communication, Memory management, File system

TEXT BOOKS:

REFERENCE BOOKS:
1. Operating System by Peterson, 1985, AW.
2. Operating System by Milankovic, 1990, TMH.
3. Operating System Incorporating With Unix & Windows By Colin Ritche, 1974, TMH.
4. Operating Systems by Mandrik & Donovan, TMH

Note:- In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
CSE208B INFORMATION SYSTEM ANALYSIS & DESIGN
B. Tech. Semester – IV(Information Technology)) (Common with CSE)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>Examination</td>
<td>75 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of Examination</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT - I

Introduction to System Development: Categories of Information Systems, Structured analysis method, System prototype method, succeeding as system analyst.

Analysis: Feasibility study, Feasibility considerations, Steps in feasibility analysis, Cost and Benefit analysis, Procedure for cost and benefit determination.

UNIT-II

UNIT-III

Design: System design considerations, Process and stages of system design: Logical and Physical, Selection of best alternate design strategy.

Design of Input and Output: Capturing data for input, Input validation design of output: Output objectives, Types of output, Presentation format of output, Design of software: Top Down Structure, Coupling, Cohesion, Span of control, Module size, Shared modules. Training, Conversion Methods

UNIT-IV

Object Oriented Design and Modeling: Introduction to object oriented design, Designing Object responsibilities, and Object reusability.

Case Study of Some Common Systems: Inventory control, Laboratory management systems, Hotel reception system, Hospital management system etc./ Seminar on State-of-the-art technology.

TEXT BOOKS

REFERENCE BOOKS

Note:- In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT-I

General System Architecture: Classification of computers (Based on Computation methodology (Analog, digital, hybrid), based on generations, based on size & capability, based on Flynn’s criteria); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; Register Transfer language; Computer Buses (basic design using multiplexers), Bus width, Bus clocking (synchronous, asynchronous), bus arbitration, Bus examples (ISA bus, PCI bus, Universal serial bus); Computer Arithmetic, Addition, subtraction (signed magnitude, signed 2’s complement), Multiplication (Booth’s algorithm)

UNIT-II

CPU Organization: CPU Architecture types (accumulator, register, stack, memory/register) Instruction cycle (Fetch-Decode-Execute); Instruction set based classification of processors (RISC, CISC, and their comparison); Addressing modes (register, immediate, direct, indirect, indexed); Operations in the instruction set; Arithmetic and Logical, Data Transfer, Control Flow; Instruction set formats (fixed, variable, hybrid)

UNIT-III

Input/Output & Control Unit: Input Output Interface, Asynchronous data transfer (Strobe control, handshaking, serial transfer); Serial Vs parallel data transmission; Modes of data transfer (Programmed I/O, Interrupt driven, Direct Memory access (DMA)); Control Unit design: Control unit design methods (hardwired & microprogrammed) Control Memory, Address Sequencing, Micro instructions.

Memory Organization: Memory device characteristics (access/cycle time, cost per bit, volatility, storage density); Memory hierarchy; Main memory Design (Semiconductor RAM & ROM organization, memory expansion, Static & dynamic memory types, their comparison); Associative memory Design, Match logic, Locality of reference principle (Temporal & Spatial); Cache mapping (Direct, associative, set associative); Cache writing policies (Copy-Back, Write-through); Virtual Memory (Address space, memory space, Address mapping using pages, Page replacement)

TEXT BOOKS:

REFERENCE BOOKS:

NOTE: Eight questions will be set in all by the examiner taking two questions from each unit. Students will be required to attempt five questions in all taking at least one question from each section.
Experimental work will be based upon the course CSE202B

1. Introduction to SQL.

2. To study Basic SQL commands (create database, create table, use , drop, insert) and execute the following queries using these commands:
 - Create a database named ‘Employee’.

3. To study the viewing commands (select , update) and execute the following queries using these commands:
 - Find the names of all employees who live in Delhi.
 - Increase the salary of all employees by Rs. 5,000.
 - Find the company names where the number of employees is greater than 10,000.
 - Change the Company City to Gurgaon where the Company name is ‘TCS’.

4. To study the commands to modify the structure of table (alter, delete) and execute the following queries using these commands:
 - Add an attribute named ‘Designation’ to the table ‘Emp’.
 - Modify the table ‘Emp’, Change the datatype of ‘salary’ attribute to float.
 - Drop the attribute ‘depttname’ from the table ‘Emp’.
 - Delete the entries from the table ‘Company’ where the number of employees are less than 500.

5. To study the commands that involve compound conditions (and, or, in , not in, between, not between, like, not like) and execute the following queries using these commands:
 - Find the names of all employees who live in ‘Gurgaon’ and whose salary is between Rs. 20,000 and Rs. 30,000.
 - Find the names of all employees whose names begin with either letter ‘A’ or ‘B’.
 - Find the company names where the company city is ‘Delhi’ and the number of employees is not between 5000 and 10,000.
 - Find the names of all companies that do not end with letter ‘A’.

6. To study the aggregate functions (sum, count, max, min, average) and execute the following queries using these commands:
 - Find the sum and average of salaries of all employees in computer science department.
 - Find the number of all employees in company ‘TCS’.
 - Find the maximum and the minimum salary in the HR department.
7. To study the grouping commands (group by, order by) and execute the following queries using these commands:
 - List all employee names in descending order.
 - Find number of employees in each department where number of employees is greater than 5.
 - List all the department names where average salary of a department is Rs.10,000.

8. To study the commands involving data constraints and execute the following queries using these commands:
 - Alter table ‘Emp’ and make ‘enumber’ as the primary key.
 - Alter table ‘Company’ and add the foreign key constraint.
 - Add a check constraint in the table ‘Emp’ such that salary has the value between 0 and Rs.1,00,000.

9. To study the commands for aliasing and renaming and execute the following queries using these commands:
 - Rename the name of database to ‘Employee1’.
 - Rename the name of table ‘Emp’ to ‘Emp1’.
 - Change the name of the attribute ‘ename’ to ‘empname’.

10. To study the commands for joins (cross join, inner join, outer join) and execute the following queries using these commands:
 - Retrieve the complete record of an employee and its company from both the table using joins.
 - List all the employees working in the company ‘TCS’.

11. To study the various set operations and execute the following queries using these commands:
 - List the enumber of all employees who live in Delhi and whose company is in Gurgaon or if both conditions are true.
 - List the enumber of all employees who live in Delhi but whose company is not in Gurgaon.

12. To study the various scalar functions and string functions (power, square, substring, reverse, upper, lower, concatenation) and execute the following queries using these commands:
 - Reverse the names of all employees.
 - Change the names of company cities to uppercase.
 - Concatenate name and city of the employee.

13. To study the commands for views and execute the following queries using these commands:
 - Create a view having ename and ecity.
 - In the above view change the ecity to ‘Delhi’ where ename is ‘John’.
 - Create a view having attributes from both the tables.
 - Update the above view and increase the salary of all employees of IT department by Rs.1000.

14. Study of Integrity Constraints in SQL.

15. Study of Use of Group By and Having Clause.

16. Study of various types of Views.

17. Study of Indexes in SQL.

18. Study of Aggregate Functions in SQL.

Teacher can give queries based on SQL Commands.
1. Raising a number \(n \) to a power \(p \) is the same as multiplying \(n \) by itself \(p \) times. Write a function called `power()` that takes a double value for \(n \) and an int value for \(p \), and returns the result as double value. Use a default argument of 2 for \(p \), so that if this argument is omitted, the number will be squared. Write a main() function that gets values from the user to test this function.

2. A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates.

Write a program that uses a structure called `point` to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for P1: 3 4
Enter coordinates for P2: 5 7
Coordinates of P1 + P2 are: 8 11

3. Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch statement to select the operation). Finally it should display the result.

When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be ‘Y’ or ‘N’. Some sample interaction with the program might look like this.

Enter first number. Operator, second number: 10/3
Answer = 3.333333
Do another (YI N)? Y
Enter first number. Operator, second number 12 + 100
Answer = 112
Do another (Y I N)? N

4. Create two classes DM and DB which store the value of distances. DM stores distances in metres and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB.
Use a friend function to carry out the addition operation. The object that stores the results maybe DM object or DB object, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and centimetres depending on object on display.

5. Create a class rational which represents a numerical value by two double values- NUMERATOR & DENOMINATOR Include the following public member Functions:
 - constructor with no arguments (default).
 - constructor with two arguments.
 - void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator.
 - Overload + operator to add two rational number
 - Overload » operator to enable input through cin
 - Overload « operator to enable output through cout.
 - Write a main () to test all the functions in the class.

6. Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.

7. A hospital wants to create a database regarding its indoor patients. The information to store include
 - Name of the patient
 - Date of admission
 - Disease
 - Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age or the patients List the information about all the to store the age of the patients. List the information about an the pediatric patients (less than twelve years in age).

8. Make a class Employee with a name and salary. Make a class Manager inherit from Employee. Add an instance variable, named department, of type string. Supply a method to toString that prints the manager's name, department and salary. Make a class Executive inherit from Manager Supply a method to String that prints the string Executive followed by the information stored in the Manager superclass object. Supply a test program that tests these classes and methods.

9. Imagine a tollbooth with a class called toll Booth. The two data items of a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (). increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals.
1) Study of WINDOWS 2000 Operating System.
2) Administration of WINDOWS 2000 (including DNS, LDAP, Directory Services).
3) Study of LINUX Operating System (Linux kernel, shell, basic commands pipe & filter commands).
4) Administration of LINUX Operating System.
5) Writing of Shell Scripts (Shell programming).
6) AWK programming.
The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/her performance/achievements in different walks of life.

A Faculty Counselor will be attached to a group of students which will remain associated with him/her during the entire period of the degree program in the University. Each faculty member will serve as a faculty counselor. They will act like a local guardian for the students associated with him/her and will help them in terms of career guidance, personal difficulties.

A. The student will present a written report before the committee with following in view:

The student will present before the committee his/her achievements during the current academic session in the form of a written report highlighting followings:

I.	Academic Performance	
II.	Extra Curricular Activities / Community Service, Hostel Activities	(8 Marks)
III	Technical Activities / Industrial, Educational tour	(8 Marks)
IV	Sports/games	(14 Marks)
V	Moral values & Ethics	(15 Marks)

NOTE: Report submitted by the students should be typed on both sides of the paper.

C. A student will support his/her achievement and verbal & communicative skill through presentation before the committee. (30 Marks)

C. Moral values & Ethics

Syllabus - Process for Value Education, self-evaluation concept and process.

A minor test will be conducted during the semester and it will be the duty of the concerned teacher assigned to teach Moral values & Ethics to submit the awards to respective chairman of the department/Director/Principal.

The evaluation of this course will be made by the following Committee.

University Departments:
1. Chairperson of the Department Chairman
2. Senior Most Faculty Counselor Member
3. Vice-Chancellor’s Nominee Member

Affiliated Colleges:
4. Director/Principal Chairman
5. Head of the Department/Sr. Faculty Member
6. External Examiner to be appointed by the University Member

Note: Remuneration will be paid to the external examiner only (at par with the other practical examinations).
UNIT-1
Oracle overview and Architecture, Installing and managing oracle, creating a database and data dictionary, control and redo log files, Managing Table spaces and data files, Managing tables, indexes, and constraints, Managing users and security.

UNIT-II
Basic Oracle net architecture - basic net server side configuration, basic net client-side configuration, usage and configuration of Oracle shared server architecture. Backup and Recovery, Transporting data between databases - export and import utility, Loading data into database-SQL*loader, database performance tuning.

UNIT-III
Basic constructs of PL/SQL, Cursors: need, types and implementation, Stored Procedures, functions

UNIT-IV
Active Database, ECA Rules, implementing ECA rules in PL/SQL. CUBE technology, Data ware house, creating a Data ware House in oracle.

TEXT BOOKS:
1. Kevin loney, Bob Baryla Oracle database 10g: DBA handbook, Tata McgrawHills.
2. Biju Thomas, Bob Baryla, Oracle DBA Fundamental-I, BPB publications

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
IT303B PRINCIPLES OF SOFTWARE ENGINEERING
B. Tech. Semester – V(Information Technology)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT-I

Software Development Life Cycle: Waterfall model, Incremental and Evolutionary process models, Personal Software process (PSP) and Team Software process (TSP), Overview of agile process and aspect oriented programming

UNIT-II

System Design: Design Concepts, design models for architecture, component, data and user interfaces; Problem Partitioning, Abstraction, Cohesiveness, Coupling, Top Down and Bottom Up design approaches; Functional Versus Object Oriented Approach, Design Specification, 4GL, basics of UML

Coding: TOP-DOWN and BOTTOM-UP structure programming, Information Hiding, Programming Style, and Internal Documentation, Verification.

UNIT-III

Software Quality Assurance: Software Configuration Management, Overview of Software Quality Control and Quality Assurance, ISO 9000 Certification for Software Industry, SEI Capability Maturity Model (CMM) and Comparison between ISO & SEI CMM.

UNIT-IV

Object Oriented Software Engineering: Analysis, Design, Implementation and testing issues of object oriented software engineering.

TEXT BOOKS:

REFERENCE BOOKS:

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
UNIT - I

Introduction to Java: Importance and features of Java, Concepts of Java Virtual machine (JVM), Keywords, Constants, Variables and data types, operators and expressions, Control statements, Conditional statements, loops and iterations. Class definition, adding variables and methods, creating objects, constructors, defining methods, calling methods, method overloading. Creating an array, one and two dimensional array, string array and methods String and String Buffer classes, Wrapper classes.

Inheritance: Basic types, super classes, Multilevel hierarchy abstract and final classes, object class, Packages and interfaces, Access protection, extending Interfaces, Exception handling, Fundamental exception types, uncaught exception, throw, throws, final methods, creating own exceptions

UNIT - II

Multithreaded programming: Review of fundamentals, Java thread model, synchronization, messaging, thread class, Run able interface, interthread communication, Monitors, Deadlock, Producer/Consumer problems, Wait() and notify(), Performance issues.
Input/Output: Basics, Streams, Byte and Character Streams, predefined streams, reading and writing from console and files, using Java packages.

UNIT - III

Networking in Java: Networking fundamentals, Client/server model, Internet addresses, Sockets, networking classes and interfaces, using Java.net package, TCP/IP and data gram programming, HTTP protocol and URLs

UNIT - IV

Event Handling: Different mechanism, the delegation event model, classes, Event Listener Interfaces, Adapter and Inner classes, Working with windows, graphics and text, using AWT controls, Layout managers and menus, handling Image, animation, sound and video Java Applet

TEXT BOOKS
1. Core Java Volume-I and II 2nd edition-Sun MicroSystem
2. Java -2 The Complete Reference Patrick Naughton and Herbertz Schidt, second Edition

REFERENCE BOOK:
1. HTML 4 Unleashed Rick Dranell, Second edition, Tech media publication

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
UNIT-I:

OSI Reference Model and Network Architecture: Introduction to Computer Networks, Example networks ARPANET, Internet, Private Networks, Network Topologies: Bus, Star, Ring, Hybrid, Tree, Complete, Irregular – Topology; Types of Networks : Local Area Networks, Metropolitan Area Networks, Wide Area Networks; Layering architecture of networks, OSI model, Functions of each layer, Services and Protocols of each layer.

UNIT-III:

Local Area Networks: Introduction to LANs, Features of LANs, Components of LANs, Usage of LANs, LAN Standards, IEEE 802 standards, Channel Access Methods, Aloha, CSMA, CSMA/CD, Token Passing, Ethernet, Layer 2 & 3 switching, Fast Ethernet and Gigabit Ethernet, Token Ring, LAN interconnecting devices: Hubs, Switches, Bridges, Routers, Gateways.

UNIT-IV:

Wide Area Networks: Introduction of WANs, Routing, Congestion Control, WAN Technologies, Distributed Queue Dual Bus (DQDB), Synchronous Digital Hierarchy (SDH)/ Synchronous Optical Network (SONET), Asynchronous Transfer Mode (ATM), Frame Relay, Wireless Links.

Introduction to Network Management: Remote Monitoring Techniques: Polling, Traps, Performance Management, Class of Service, Quality of Service, Security management, Digital signatures, SSL, Firewalls, VLANs, Proxy Servers.

TEXT BOOKS:

REFERENCE BOOKS:

2. Business Data Communications, Fitzgerald Jerry.,

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
UNIT-I

Brief Review of Graphs, Sets and disjoint sets, union, sorting and searching algorithms and their analysis in terms of space and time complexity.

Divide and Conquer: General method, binary search, merge sort, quick sort, selection sort, Strassen’s matrix multiplication algorithms and analysis of algorithms for these problems.

UNIT-II

Greedy Method: General method, knapsack problem, job sequencing with dead lines, minimum spanning trees, single source paths and analysis of these problems.

Dynamic Programming: General method, optimal binary search trees, 0/1 knapsack, the traveling salesperson problem.

UNIT-III

Back Tracking: General method, 8 queen’s problem, graph colouring, Hamiltonian cycles, analysis of these problems. Branch and Bound: Method, 0/1 knapsack and traveling salesperson problem, efficiency considerations. Techniques for algebraic problems, some lower bounds on parallel computations.

UNIT-IV

NP Hard and NP Complete Problems: Basic concepts, Cook’s theorem, NP hard graph and NP scheduling problems some simplified NP hard problems.

TEXT BOOKS:

1. Fundamental of Computer algorithms, Ellis Horowitz and Sartaj Sahni, 1978, Galgotia Publ.,
2. Introduction To Algorithms, Thomas H Cormen, Charles E Leiserson And Ronald L Rivest: 1990, TMH

REFERENCE BOOKS:

3. Introduction to Design and Analysis of Algorithm, Goodman, S.E. & Hedetniemi, 1997, MGH.

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
CSE309B THEORY OF AUTOMATA & COMPUTATION

B. Tech. Semester – VI (Information Technology) (Common with CSE)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
</tr>
</tbody>
</table>

Class Work	: 25 Marks
Examination	: 75 Marks
Total	: 100 Marks
Duration of Examination	: 3 Hours

UNIT-I

Basic Computational Constructs: Finite State Systems, Basic Definitions Non-Deterministic finite automata (NDFA), Deterministic finite automata (DFA), Equivalence of DFA and NDFA Finite automata with E-moves, Regular Expressions, Equivalence of finite automata and Regular Expressions, Regular expression conversion and vice versa. Conversion of NFA to DFA by Arden’s Method

Concept of basic Machine: Properties and limitations of FSM, Moore and Mealy Machines, Equivalence of Moore and Mealy machines.

UNIT-II

Regular Sets & Grammars: The Pumping Lemma for Regular Sets, Applications of the pumping lemma, Closure properties of regular sets, Myhill-Nerode Theorem and minimization of finite Automata, Minimization Algorithm.

Definition, Context free and Context sensitive grammar, Ambiguity regular grammar, Reduced forms, Removal of useless Symbols and unit production, Chomsky Normal Form (CNF), Griebach Normal Form (GNF).

UNIT-III

Pushdown Automata & Turing Machines: Introduction to Pushdown Machines, Applications of Pushdown Machines

Deterministic and Non-Deterministic Turing Machines, Design of T.M, Halting problem of T.M., Post’s Correspondence Problem.

UNIT-IV

Chomsky Hierarchies & Computability: Chomsky hierarchies of grammars, Unrestricted grammars, Context sensitive languages, Relation between languages of classes.

Primitive Recursive Functions.

TEXT BOOK:

1. Introduction to automata theory, language & computations- Hopcroft & O.D.Ullman, R Mothwani, Addison Wesley Publishers

REFERENCES BOOKS:

2. Introduction to formal Languages & Automata-Peter Linz, 2001, NarosaPubl..
5. Introduction to languages and the Theory of Computation by John C. Martin 2012, T.M.H.

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
1. To Study architecture of the oracle DBMS.
2. To study the installation of the Oracle and MySQL DBMS (standalone mode and Client Server Mode) in windows environment.
3. To study the installation of the Oracle and MySQL DBMS (standalone mode and Client Server Mode) in windows environment.
4. To study different types of users and create users in Oracle (using command prompt as well as GUI).
5. Study of various types of privileges to the users in Oracle.
6. Granting and Revoking of privileges to users.
7. To study Use of Import/Export utilities in Oracle.
8. Study of Commit/Rollback of Transactions in Oracle.
10. Study of Recovery technique used by Oracle.

Note: at least 5 more exercise related to the contents of the subject be given to students.
IT325 JAVA PROGRAMMING LAB
B. Tech. Semester – V(Information Technology)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>20 Marks</td>
<td>30 Marks</td>
<td>50 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

1. Write a Java Package with Stack and queue classes.
2. Design a class for Complex numbers in Java. In addition to methods for basic operations on complex numbers, provide a method to return the number of active objects created.
3. Develop with suitable hierarchy, class for point, shape, rectangle, square, circle, ellipse, triangle, polygon etc.
4. Design a simple test application to demonstrate dynamic polymorphism.
5. Design a Java interface for ADT Stack.
6. Develop two different classes that implement this interface. One using array and other using linked list.
7. Develop a simple paint like program that can draw basic graphical primitives.
8. Develop a scientific calculator using event driven programming.
9. Develop a template for linked list class along with its members in Java.

Five pore exercises are to be given by teacher concerned based on syllabus IT305B

CSE325 COMPUTER NETWORKS LAB
B. Tech. Semester – V(Information Technology) (Common with CSE)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>20 Marks</td>
<td>30 Marks</td>
<td>50 Marks</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

1. Write specifications of latest desktops and laptops.
2. Familiarization with Networking Components and devices: LAN Adapters, Hubs, Switches, Routers etc.
3. Familiarization with Transmission media and Tools: Co-axial cable, UTP Cable, Crimping Tool, Connectors etc.
4. Preparing straight and cross cables.
5. Study of various LAN topologies and their creation using network devices, cables and computers.
7. Implementation of file and printer sharing.
10. Installation of ftp server and client.
At the end of 4th semester each student would undergo four weeks Professional Training in an Industry/ Institute/ Professional Organization/ Research Laboratory etc. with the prior approval of the Training and Placement Officer of the University and submit in the department a typed report along with a certificate from the organization.

The typed report should be in a prescribed format.

The report will be evaluated in the V Semester by a Committee consisting of three teachers from different specialization to be constituted by the Chairperson of the department. The basis of evaluation will primarily be the knowledge and exposure of the student towards different processes and the functioning of the organization.

The student will interact with the committee through presentation to demonstrate his/her learning.

Teachers associated with evaluation work will be assigned 2 periods per week load.
OBJECTIVE

The course aims at developing competence for report writing with a focus on its complex writing techniques and procedures.

COURSE CONTENT

UNIT I

Report Writing

Reports: meaning, their importance and types, Structure of reports, Formats of reports, Use of illustrations

UNIT II

Writing of Business and Technical Reports:

Preliminary steps and procedure of writing report, writing various types of reports on technical, business related topics

RECOMMENDED READING

SCHEME OF END SEMESTER EXAMINATION (MAJOR TEST) AND INSTRUCTIONS FOR THE EXAMINER

1. The duration of the exam will be 2 hours.
2. The Question Paper for this theory course shall have three questions in all covering both the units. All will be compulsory with internal choice.
3. Question no. 1 will be of 10 marks. The question may have two/three parts with enough internal choice, covering various components of both the Units.
4. Question no 2 with internal choice will be of 10 marks covering contents of the Unit I. It will be theoretical in nature.
5. Question no 3 will have two parts of 15 marks each. The student will be asked to write reports on business and technical subject/ issue covering contents of Unit II. The emphasis would be on testing the actual report writing on a given business and technical situation/ subject in letter format.
UNIT-I
Introduction to the Internet, The world wide web: The idea of hypertext and hyper media; How the web works-HTTP, HTML and URLs; How the browser works-MIME types, plugins and helper applications; The standards-HTML, XML, XHTML and the W3C.
Hypertext markup language: The anatomy of an HTML document; Marking up for structure and style: basic page markup, absolute and relative links, ordered and unordered lists, embedding images and controlling appearance, table creation and use, frames, nesting and targeting.
Descriptive markup: Meta tags for common tasks, semantic tags for aiding search, the doubling code and RDF.

UNIT-II
Separating style from structure with style sheets: Internal style specifications within HTML, External linked style specification using CSS, page and site design considerations.
Client side programming: Introduction to the JavaScript syntax, the JavaScript object model, Event handling, Output in JavaScript, Forms handling, miscellaneous topics such as cookies, hidden fields, and images; Applications.

UNIT-III
Server side programming: Introduction to Server Side Technologies CGI/ASP/JSP., Programming languages for server Side Scripting, Configuring the server to support CGI, applications; Input/ output operations on the WWW, Forms processing, (using PERL/VBSCRIPT/JavaScript)

UNIT-IV
Other dynamic content technologies: introduction to ASP & JSP, Delivering multimedia over web pages, The VRML idea, The Java phenomenon-applets and servelets, issues and web development.
Introduction to Microsoft .NET Technology and its comparison with the competing Technologies.

TEXT BOOKS:-
2. Web Technologies By Achyut S Godbole ,AtulKahate, 2003, T.M.H

REFERENCE BOOKS:-
4. XHTML Black Book by Steven Holzner, 2000
7. Doug Tidwell, James Snell, PavelKulchenko; Programming Web services, O'Reilly.

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
UNIT-I

Introduction: What is software testing and why it is so hard?, Error, Fault, Failure, Incident, Test Cases, Testing Process, Limitations of Testing, No absolute proof of correctness, Overview of Graph Theory.

Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, Cause Effect Graphing Technique.

UNIT-II

Structural Testing: Path testing, DD-Paths, Cyclomatic Complexity, Graph Metrics, Data Flow Testing, Mutation testing.

UNIT-III

Reducing the number of test cases: Prioritization guidelines, Priority category, Scheme, Risk Analysis, Regression Testing, and Slice based testing

UNIT-IV

TEXT BOOKS
4. Louise Tamres, Software Testing, Pearson Education Asia, 2002

REFERENCE BOOKS

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
UNIT-I

UNIT-II
Knowledge representation issues, predicate logic- logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems.

UNIT-III
Reasoning under uncertainty, review of probability, Baye’s probabilistic interferences and Dempster shafer theory, Heuristic methods, symbolic reasoning under uncertainty, Statistical reasoning, Fuzzy reasoning, Temporal reasoning, Non monotonic reasoning.

UNIT-IV
Principles of Natural language processing, rule based systems architecture, Expert systems, knowledge acquisition concepts, AI application to robotics, and current trends in intelligent systems.

TEXT BOOK:

REFERENCE BOOKS:
1. Artificial Intelligence, Elain Rich and Kevin Knight, 1991, TMH.

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit
UNIT-I

Introduction: Characteristics of a good programming language, compiler & interpreters, Introduction to procedural, non-procedural, structured, functional and object oriented programming language, Comparison of C & C++ programming languages.

UNIT-II

Elementary & Structured Data Types: Elementary data types – Specification & implementation of elementary data types, Declarations, type checking & type conversions , Assignment & initialization, Numeric data types, enumerations

Structured data types & data Objects , specification & implementation of structured data types, Declaration & type checking of data structure , arrays, Character strings, variable size data structures , Union, pointer

UNIT-III

Sequence Control & Data Control: Implicit & explicit sequence control, sequence control within expressions, sequence control within statement, Subprogram sequence control: simple call return, Exception & exception handlers.

Data Control: Names & referencing environment, static & dynamic scope, block structure, Local data & local referencing environment, Parameters & parameter transmission schemes.

UNIT-IV

Storage Management & other features: Major run time elements requiring storage, programmer and system controlled storage management, phases of storage management, Static storage management, Stack based storage management, Heap storage management- variable & fixed size elements.

TEXT BOOKS:

REFERENCE BOOKS:

1. Fundamentals of Programming languages by Ellis Horowitz, 1984, Galgotia publications (Springer Verlag),

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
UNIT-I

Introduction: Parallel Computing, Parallel Architectures, Architectural Classification Schemes, Performance of Parallel Computers, Performance Metrics For Processors, Parallel Programming Models, Parallel Algorithms, Distributed Processing

UNIT-II

Pipeline Processing: Pipeline Performance, Arithmetic Pipelines, Pipelined Instruction Processing, Pipeline Stage Design, Hazards, Dynamic Instruction Scheduling, Memory System Used in Pipelined Processors, Pipeline Scheduling Theory, High Performance Processor Designs, Branch Prediction

UNIT-III

Synchronous Parallel Processing: Example-SIMD Architecture and Programming Principles, SIMD Parallel Algorithms, Data Mapping and Memory in Array Processors, Case Studies of SIMD Parallel Processors

UNIT-IV

Interconnection Networks: Introduction to Permutations, Elementary Permutations used in Interconnection Networks, Network Classifications, Complete(Nonblocking) Networks: Cross Bars and other Commonly Used Interconnection Networks.

TEXT BOOK:-

REFERENCE BOOKS:

2. Parallel Computing By V Rajaraman,

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
CSE303B COMPUTER GRAPHICS
B. Tech. Semester – VI (Information Technology) (Common with CSE 5th Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>Examination</td>
<td>75 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of Examination</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT- I

UNIT- II

Two/Three Dimensional Viewing: The 2-D viewing pipeline, windows, viewports, window to view port mapping; Clipping: point, clipping line (algorithms):- 4 bit code algorithm, Sutherland-cohen algorithm, parametric line clipping algorithm (Cyrus Beck).

Polygon clipping algorithm: Sutherland-Hodgeman polygon clipping algorithm. Two dimensional transformations: transformations, translation, scaling, rotation, reflection, composite transformation.

Three dimensional transformations: Three dimensional graphics concept, Matrix representation of 3-D Transformations, Composition of 3-D transformation.

UNIT- III

Viewing in 3D: Projections, types of projections, the mathematics of planer geometric projections, coordinate systems.

Hidden surface removal: Introduction to hidden surface removal .Z- buffer algorithm, scanline algorithm, area sub-division algorithm.

UNIT- IV

Representing Curves and Surfaces: Parametric representation of curves: Bezier curves, B-Spline curves.

Parametric representation of surfaces; Interpolation method.

Illumination, shading, image manipulation: Illumination models, shading models for polygons, shadows, transparency. What is an image? Filtering, image processing, geometric transformation of images.

TEXT BOOKS:

REFERENCE BOOKS:

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
LIST OF PRACTICALS

1. Write a program for 2D line drawing as Raster Graphics Display.
2. Write a program for circle drawing as Raster Graphics Display.
3. Write a program for polygon filling as Raster Graphics Display.
4. Write a program for line clipping.
5. Write a program for polygon clipping.
6. Write a program for displaying 3D objects as 2D display using perspective transformation.
7. Write a program for rotation of a 3D object about arbitrary axis.
8. Write a program for Hidden surface removal from a 3D object.

NOTE: At least 5 more exercises to be given by the concerned teacher.
1. A Simple HTML home page provide links to move to other pages like hobbies, educational info, personal info etc.

2. A HTML program to illustrate the use of frame and frameset tags of HTML.

3. A HTML Program which use a HTML controls to create a student information form to collect student’s information like name, address, phone, email, sex, birth date, hobbies etc. Download

4. A HTML Program which demonstrates loops like for loop, do while, while in java script.

5. A HTML Program which demonstrates the use of functions in java script.

6. A HTML Program which demonstrates various events like onclick, ondbclick, onfocus, onblur, onchange, onmouseover, onmouseout, window event, onload, onunload event.

7. A HTML Program to create various functions and sub routines to validate the data entered by user in form. Download

8. Create a program to illustrate the concept of associative array in PHP.

9. Create PHP program to implement the concept of Session management.

10. Create a PHP program to display student information in webpage. Student’s data is stored in My SQL database.

11. Create a PHP program to insert student information from HTML form. Student’s data is stored in My SQL database.

Note: More exercises based on IT304B may be given by the teacher.
1. Triangle problem for testing.
2. Quadratic equation problem.
3. To represent a graph in memory.
4. To Write a program to find Cyclomatic Complexity of given program.
5. To write a program to generate a flow graph of given program.
6. To write a program to find independent paths from the flow graph of given program.
7. To write a program to draw binary search tree and find equivalence partitions for test cases.
8. Develop a program to generate cases automatically. (Any one Data flow testing, Class based testing, Basis path testing, Graph based testing.)

1. Study of PROLOG.

Write the following programs using PROLOG:

2. Write a program to solve 8 queens problem.
5. Solve 8-puzzle problem using best first search.
7. Solve traveling salesman problem.

Note: At least 5 more exercises to be given based on IT326B.
OBJECTIVE

To enable students to develop their speaking skills with professional proficiency.

COURSE CONTENT

Oral Presentations:

Group Discussion; Mock interviews

Note for the Teacher:

The teacher concerned, by devising her/his method, must preview and review the student’s spoken proficiency at the beginning and end of the semester respectively to find the efficacy of the course and degree of improvement in the student.

RECOMMENDED READING

SCHEME OF END SEMESTER EXAMINATION (Practical)

An external Practical exam of 30 marks of 2 hour duration for the course will be conducted by an external examiner appointed by the competent authority of the University’s.

NOTE: Students will be tested for their oral communication competence making them participate in Group discussion, mock situations for interview. Students may also be evaluated through a viva conducted by an external examiner.
The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/ her performance / achievements in different walks of life.

A Faculty Counselor will be attached to a group of students which will remain associated with him /her during the entire period of the degree program in the University. Each faculty member will serve as a faculty counselor. They will act like a local guardian for the students associated with him / her and will help them in terms of career guidance, personal difficulties.

B. The student will present a written report before the committee with following in view:

The student will present before the committee his/her achievements during the current academic session in the form of a written report highlighting followings:

I. Academic Performance

II. Extra Curricular Activities / Community Service, Hostel Activities (8 Marks)

III. Technical Activities / Industrial, Educational tour (8 Marks)

IV. Sports/games (14 Marks)

V. Moral values & Ethics (15 Marks)

NOTE: Report submitted by the students should be typed on both sides of the paper.

B. A student will support his/her achievement and verbal & communicative skill through presentation before the committee. (30 Marks)

C. Moral values & Ethics

Syllabus - A few topics from the below mentioned books

A minor test/Quiz will be conducted during the semester and It will be the duty of the concerned teacher assigned to teach Moral values & Ethics to submit the awards to respective chairman of the department / Director/Principal.

The evaluation of this course will be made by the following Committee.

University Departments:
1. Chairperson of the Department Chairman
2. Senior Most Faculty Counselor Member
3. Vice- Chancellor’s Nominee Member

Affiliated Colleges:
1. Director/Principal Chairman
2. Head of the Department/Sr. Faculty Member
3. External Examiner to be appointed by the University Member

Note: Remuneration will be paid to the external examiner only (at par with the other practical examinations).
UNIT-I

Introduction: Concepts of Classes and Objects, Constructors, Inheritance, Function Overloading, Polymorphism, Packages and Interfaces, exception handling, file streams and their manipulation.

UNIT-II

JDBC: JDBC Fundamentals, Establishing Connectivity and working with connection interface, working with statements, Creating and Executing SQL statements, working with Result Set Object & Result Set Meta Data.
Java Beans: Java Bean, Installing, Starting Bean Development Kit, Use of JAR files and the use of Java Beans API.

UNIT-III

Servlets: Introduction to Servlets, Life cycle of Servlets, Creating, Compiling and running servlet, Reading the servlet Parameters, Reading Initialization parameter, Packages- javax.servletPackage, Handling HTTP Request and Response (GET / POST Request), Cookies and Session Tracking.

UNIT-IV

JSP: JSP Architecture, JSP Access Mode, JSP Syntax Basic (Directions, Declarations, Expression, Scriplet and Comments, JSP Implicit Object, Object Scope, Synchronization Issue, Session Management.

TEXT BOOKS:

REFERENCE BOOKS:

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
Unit I:

Unit II:
Socket Programming: Creating sockets, Posix data type, Socket addresses, Assigning address to a socket, Java socket programming, Thread programming, Berkeley Sockets: Overview, socket address structures, byte manipulation & address conversion functions, elementary socket system calls –socket, connect, bind, listen, accept, fork, exec, close, TCP ports (ephemeral, reserved), Berkeley Sockets: I/O asynchronous & multiplexing models, select & poll functions, signal & fcntl functions, socket implementation (client & server programs), UNIX domain protocols.

Unit III:
GSM Overview, GSM Network signaling, GSM Mobility Management, GSM Short Message Service, Mobile Number portability
General Packet Radio Service: Functional Groups, Architecture, GPRS Network nodes and Interfaces, Introductory ideas about WAP

Unit IV:

Text Books

3. Forouzen, Data Communication and Networking, TMH

Reference Books

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit
CSE401B MOBILE APPLICATIONS DEVELOPMENT
B. Tech. Semester – VIII (Information Technology) (Common with CSE)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>Examination</td>
<td>75 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of Examination</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

UNIT-I
Introduction to Mobile Application Development: Definition of mobile computing, various types of mobile computing devices (mobile computers, smart phones and dedicated devices). Web based applications, Native applications and Compare and contrast web-based mobile applications against native applications, history of mobile platforms (PDA’s, Notebooks, smartphones). Internet protocols for mobile applications i.e. WAP, evolution of browsers and Internet languages such as HTML and JavaScript.

UNIT-II
Infrastructure: Describe mobile and cell phone technologies (CDMA, GSM, 3G, 4G), Compare and contrast 3G and 4G, Internet terms: IP address, subnet mask, gateway, DNS, static vs Dynamic IP, transport including HTTP, routing, secure connections, proxies and reverse proxies.

UNIT-IV
HTML/CSS/DOM and Scripting. Basic HTML: validation, rendering and web browser, Cascading Style Sheets (CSS) and how to use them, document object model (DOM): document, objects, model, DOM tree and DOM’s utilization in web design, basic JavaScript code and constructs of the JavaScript language.

UNIT-IV
Designing mobile user interfaces and Mobile Platforms
Design mobile interfaces, usability, ways to test user interfaces, various types of user interfaces for mobile apps: Interactive voice response (IVR), SMS/MMS, Mobile web, Native applications, Hybrids, mobile application development design considerations: Text entry, screen size, user interface and user context.

Mobile Platforms: URLs for mobile apps, Compare and contrast native mobile platforms such as tightly controlled (IPhone), open (Android), and licensed (Windows Mobile), web as a mobile application platform.

TEXT BOOKS:

Reference Books:
4. Brian Fling, “Mobile Design and Development: Practical concepts and techniques for creating mobile sites and web

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
CSE404B SOFTWARE PROJECT MANAGEMENT
B. Tech. Semester – VII (Information Technology) (Common with CSE 8th SEM)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work : 25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>Examination : 75 Marks</td>
</tr>
</tbody>
</table>

Total : 100 Marks

Duration of Examination : 3 Hours

UNIT-I
Introduction to Software Project Management (SPM): Definition of a Software Project (SP), SP Vs. other types of projects activities covered by SPM, Fundamentals of Software Project Management (SPM), Need Identification, Vision and Scope document, Project Management Cycle, SPM Objectives, project as a system, management control, requirement specification, information and control in organization, Project management and CMM

Stepwise Project planning: Introduction, selecting a project, identifying project scope and objectives, identifying project infrastructure, analyzing project characteristics, identifying project products and activities, estimate efforts each activity, identifying activity risk, allocate resources, review/publicize plan.

UNIT-II
Project Evaluation & Estimation: Cost benefit analysis, cost benefit evaluation techniques, risk evaluation. Selection of an appropriate project approach, structured methods, rapid application development, water fall-, V-process-, spiral-models. Prototyping, delivery. Albrecht function point analysis.

Project Scheduling: Objectives of activity planning, project schedule, projects and activities, Identifying activities, sequencing and scheduling activities, network planning model, Network Diagrams, CPM, representation of lagged activities, backward and forward pass, identifying critical path, activity throat, shortening project, precedence networks.

Risk Management: Introduction, the nature of risk, managing risk, risk identification, risk analysis, reducing the risks, evaluating risks to the schedule, calculating the z values.

UNIT-III

Managing contracts and people: Introduction, types of contract, stages in contract, placement, typical terms of a contract, contract management, acceptance, Managing people and organizing terms: Introduction, understanding behavior, organizational behavior: a back ground, selecting the right person for the job, instruction in the best methods, motivation, working in groups, becoming a team, decision making, leadership, organizational structures, conclusion, further exercises.

UNIT-IV

TEXT BOOKS:
• Software Project Management (2nd Edition), by Bob Hughes and Mike Cotterell, 1999, TMH

Reference Books:
• Software Engineering – A Practitioner’s approach, Roger S. Pressman (5th edi), 2001, MGH
• Project Management 2/c. Maylor
• Managing Global software Projects, Gopalan Ramesh, 2001, TMH.
• S. A. Kelkar, Software Project Management, PHI Publication.

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
Develop an Android based Project

Learn Android

Lesson 1: Getting Started with Android Development

Lesson 2: Activities and Views: Android Manifest.xml, Activity Class ,Basic View Components: Layouts and Buttons

Lesson 3: Navigation with Data: Working with Intent, Sharing Data Between Activities, Application Class

Lesson 5: Drawables - Image Basics, Drawable Folders and Qualifiers, Dimensions, Image Padding, The ImageButton Widget

Lesson 6: Lists: Implementing an Android List, ListView, ListActivity, Empty Lists , ListAdapter, Sorting the Adapter, Overriding ArrayAdapter, List Interaction

Lesson 7: Dialogs, New and Old : AlertDialog, Custom Dialog, Support Library, Fragments, DialogFragment

Lesson 8: Menus: Options Menu, Modifying an Options Menu, Context Menu

Lesson 9: Saving Data with Shared Preferences: Shared Preferences, Getting Started with SharedPreferences, PreferenceActivity

Lesson 10: Saving Data with a Database: Setting Up SQLite, Creating a Helper , using the Helper, Cursor and CursorAdapter

Lesson 11: Threading with AsyncTasks: Threading in Android, AsyncTask, Tracking Progress

Lesson 12: Styles and Themes: Introduction to Styling: Defining Styles, Defining Themes, Style Inheritance, Direct Theme References
LIST OF PRACTICALS / DEMONSTRATIONS

Development of programs relating to:

JDBC
Servlets
Beans
RMI
JSP

The primary objective of this course is to develop in students the professional quality of synthesis employing technical knowledge obtained in the field of Engineering & Technology through a project work involving design, analysis augmented with creativity, innovation and ingenuity.

Project involving design/ fabrication/ testing/ computer simulation/ case studies etc. which commences in the VII Semester will be completed in VIII Semester and will be evaluated through a panel of examiners consisting of the following:

Chairman of Department : Chairperson
Project coordinator : Member Secretary
Respective project supervisor : Member

The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher).

Project coordinator will be assigned the project load of maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her.

The format of the cover page and the organization of the body of the report for all the B.Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
• At the end of 6th semester each student would undergo four weeks Professional Training in an Industry/Institute/Professional/Organization/Research Laboratory etc. with the prior approval of the Training and Placement Officer of the University and submit in the department a typed report along with a certificate from the organization.

• The typed report should be in a prescribed format.

• The report will be evaluated in the VII Semester by a Committee consisting of three teachers from different specialization to be constituted by the Chairperson of the department. The basis of evaluation will primarily be the knowledge and exposure of the student towards different processes and the functioning of the organization.

• The student will interact with the committee through presentation to demonstrate his/her learning.

• Teachers associated with evaluation work will be assigned 2 periods per week load.
UNIT-I

UNIT II

UNIT III
ENTREPRENEURSHIP DEVELOPMENT AND GOVERNMENT: Role of Central Government and State Government in promoting Entrepreneurship - Introduction to various incentives, subsidies and grants - Export Oriented Units - Fiscal and Tax concessions available; Role of Central/State agencies in the Entrepreneurship Development - District Industries Centers (DIC), Small Industries Service Institute (SISI), Entrepreneurship Development Institute of India (EDII), National Institute of Entrepreneurship & Small Business Development (NIESBUD), National Entrepreneurship Development Board (NEDB).

UNIT IV
PROJECT MANAGEMENT AND CASE STUDIES
Technical, Financial, Marketing, Personnel and Management Feasibility, Estimating and Financing funds requirement - Schemes offered by various commercial banks and financial institutions like IDBI, ICICI, SIDBI, SFCs, Venture Capital Funding, Why do Entrepreneurs fail - The Four Entrepreneurial Pitfalls (Peter Drucker), Case studies of Successful Entrepreneurial Ventures, Failed Entrepreneurial Ventures and Turnaround Ventures.

Texts and References:
2. Entrepreneurship - Hisrich Peters.
3. The Culture of Entrepreneurship - Brigitte Berger.
5. Dynamics of Entrepreneurship Development - Vasant Desai.
7. Thought Leaders - Shrinivas Pandit.
8. Entrepreneurship, 3rd Ed. - Steven Brandt.
10. The Entrepreneurial Connection - Gurmit Narula.

Note:
1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
2. The use of scientific calculator will be allowed in the examination. However, programmable calculator and cellular phone will not be allowed.
UNIT-I

UNIT-II

UNIT-III

UNIT-IV

TEXT BOOKS

REFERENCE BOOKS

3. Biomedical Telemetry – Mackay, Stuart R., John Wiley, 1

Note:

1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I

MONOCHROME TV (PICTURE AND CAMERA TUBES): Monochrome picture tube, beam reflection, Beam focussing, Screen Phosphor, Face plate, Picture tube characteristics, picture tube circuit controls, Monochrome Camera Tubes: Basic principle, Image Orthicon, Vidicon, Plumbicon

UNIT II

COLOUR TV ESSENTIALS: Compatibility, Colour perception, Three Colour theory, Luminance, Hue and Saturation, Dispersion and Recombination of light, Primary and secondary colours, Luminance signal, Chrominance Signal, Colour picture tube, colour TV Camera, Colour TV display Tubes, colour Signal Transmission, Bandwidth for colour signal transmission, Colour TV controls. Cable TV, Block Diagram and principle of working of cable TV.

UNIT III

LED AND DMD: Introduction to LED Television, comparison with LCD and Plasma TV’s, schematic of DMD, introduction to Digital MicroMirror device, Diagram of DMD, principle of working, emerging applications of DMD.

MICROWAVE OVENS AND AIR CONDITIONERS: Microwaves, Transit Time, Magnetron, Waveguides, Microwave Oven, Microwave Cooking. Air conditioning, Components of air conditioning systems, all air conditioning systems, all water Air conditioning systems, Split air conditioner.

UNIT IV

MICROPHONES: Introduction, characteristics of microphones, types of microphone: carbon, moving coil, wireless, crystal, introduction to tape recorder.

LOUDSPEAKER: Introduction to ideal and basic loudspeaker, loudspeaker construction types of loudspeaker: Dynamic and permanent magnet, woofers, tweeters, brief introduction to baffles, equalisers.

Text Books:
1. Consumer Electronics by S. P. Bali (Pearson Education)
2. Complete Satellite and Cable T.V by R.R Gulati (New Age International Publishers)

Reference Books:
1. Monochrome and Colour Television by R. R. Gulati

Note: In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I

INTRODUCTION TO THE POWER DISTRIBUTION SYSTEM: Description of the power distribution system- voltage levels, Components of the distribution system- Substation, Transformer, feeders, distribution system planning, operation & maintenance objectives, activities involved in O&M, grid management, load scheduling & dispatch, load balancing, 66-33/11 KV substation equipment, 11/0.4 KV substation equipment, Distribution transformers- reasons for DT failures.

UNIT II

ENERGY ACCOUNTING & ENERGY AUDIT: Need for energy accounting, objectives & functions of energy accounting, Energy flow diagram in power distribution system, energy accounting procedure- Energy measurement, and problems in energy accounting & overcoming these problems in energy accounting, Definition, need and types of energy audit, energy audit instruments, procedure for conducting an energy audit.

UNIT III

UNIT IV

DEMAND SIDE MANAGEMENT: An introduction, Why DSM?, Benefits of DSM, DSM in power systems: load management, DSM techniques and emerging trends, EC Act 2001, DSM on consumer side – the industrial sector, the agricultural sector, the domestic & commercial sectors, ESCO-a route for DSM.

TEXT BOOKS:

REFERENCE BOOKS:

Note:

In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT-I

ENERGY SOURCES & AVAILABILITY: World energy situation. Indian energy scenario. Comparative study of thermal, hydro, nuclear and gas power plants. Impact of thermal, gas, hydro and nuclear power stations on environment, air and water pollution, green house effect (global warming). Plasma confinement - magnetic confinement and inertial confinement, geothermal, hydrogen energy, fuel cells, Alkaline fuel cells (AFC), Solid oxide fuel cell (SOFC), Molten carbonate fuel cells (MCFC), thermo-electric power, MHD power generation OTEC & tidal waves.

UNIT-II

UNIT-III

UNIT-IV

TEXT BOOKS:
1. Electric Power Generation, B.R.Gupta
3. Power Plant Engg: G.D. Rai

REFERENCE BOOKS:
1. Renewable Energy Resources: John Twidell and Tony Weir

Note:

In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT-I
INTRODUCTION: Internet, intranet and extranet, networking, protocols, genomic data, organization, representation, data base management systems.
SEQUENCING DATA BANK: Introduction, collecting and storing sequence in laboratory, nucleic acid data bank – Gen Bank, EMBL, AIDS and RNA, protein data bank (PDB), cambridge structural database CSD, genome data bank, hybridoma data bank structure and others.

UNIT-II
SEQUENCE ANALYSIS: Analysis tools for sequence data banks, pair wise alignment: NEEDLEMAN and WUNSCH algorithms, Smith Waterman, multiple alignment – CLUSTAL-W, BLAST, FASTA, sequence patterns and motifs and profiles.
PREDICTIONS: Secondary and tertiary structure: algorithms Chao-Fasman algorithm, hidden Markov model, neural networking, protein classification, fold libraries, fold recognition (threading), homology detection, SRS-access to biological data banks.

UNIT-III
PHYLOGENETIC ANALYSIS – Basic concepts in systematics, taxonomy and phylogeny, phylogenetic trees- various types and their construction, tree building methods, distance methods, multiple alignment character based method, phylogenetic software.
MANAGING SCIENTIFIC DATA: Introduction, challenges faced in integration of biological information, SRS, Kleisli Query System TAMBIS, P/FDM mediator for a bioinformatics database, federation, discovery link and data management.

UNIT-IV

TEXT / REFERENCE BOOKS:
- Developing Bioinformatics Computer Skill, ed. Gibes & Jombeck, Shroff Publication
- Bioinformatics, ed. David W. Mount

Note:
1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I

UNIT II

UNIT III

NOISE & POLLUTION: Reduction of noise – Internal & external pollution control through alternate fuels / power plants – Catalytic converters and filters for particulate emission.

UNIT IV

VEHICLE OPERATION AND CONTROL: Computer control for pollution and noise control and for fuel economy – Transducers and actuators – Information technology for receiving proper information and operation of the vehicle like optimum speed and direction.

TEXT BOOKS

REFERENCES

Note:

In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT - I
WATER POLLUTION - Classification of water pollutants, water characteristics, effluent standards, primary treatment, secondary treatment - aerobic (activated sludge, aerated lagoons, trickling filter, roughing filter, rotating biological contactor) anaerobic (contact process, UASB).

UNIT - II
AIR POLLUTION: Classification of air pollutants, Particulates: Physical characteristics, mode of formation, setting properties, Control measures.

UNIT - III
SOLID WASTE: Types, sources and properties of solid waste, methods of solid waste treatment and disposal
SOLID WASTE MANAGEMENT – Generation, Collection and techniques for ultimate disposal, Elementary discussion on resource and energy recovery.

UNIT - IV
Elementary treatment of nuclear pollution, metal pollution, noise pollution their effects & control.
Trace element: Mechanism of distribution, essential and non essential elements, trace of element in marin environment, its ecological effects and biological effects.

Suggested Books:
2. Metacaf – EDDY – Waste-water engineering revised by George Teholonobus (TMH)

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I

INFORMATION SYSTEM FOUNDATIONS: Introduction to Information System and MIS, Decision support and decision making systems, systems approach, the systems view of business, Managing the digital firm, Electronic Commerce and Electronic business, DBMS, RDBMS, introduction to Telecommunication and Networks.

I.T. INFRASTRUCTURE: Managing Hardware Assets, Managing Software Assets, Managing Data Resources, Internet And New IT Infrastructure.

UNIT II

CONCEPTUAL SYSTEM DESIGN: Define the problems, set systems objective, establish system constraints, determine information needs determine information sources, develop alternative conceptual design and select one document the system concept, and prepare the conceptual design report. Information Systems Security and Control, Ethical and Social Impact of Information Systems.

UNIT III

DETAILED SYSTEM DESIGN: Inform and involve the organization, aim of detailed design, project management of MIS detailed design, identify dominant and trade of criteria, define the sub systems, sketch the detailed operating sub systems and information flow, determine the degree of automation of each operation, inform and involve the organization again, inputs outputs and processing, early system testing, software, hardware and tools propose an organization to operate the system, documentation of detailed design.

UNIT IV

IMPLEMENTATION, EVALUATION AND MAINTENANCE OF THE MIS: Plan the implementation, acquire floor space and plan space layouts, organize for implementation, develop procedures for implementation, train the operating personnel, computer related acquisitions, develop forms for data collection and information dissemination, develop the files test the system, cut-over, document the system, evaluate the MIS control and maintain the system. Pitfalls in MIS development, Redesigning the organization with Information systems, Managing Knowledge Work.

TEXT BOOKS:

REFERENCE BOOKS:
1. Management Information System; O Brian; TMH
2. Management Information System by Davis Olson Mac Graw Hill

Note:
In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
UNIT I

INTRODUCTION TO CYBERCRIME: Cybercrime and Information Security, Classifications of Cybercrimes, The need for Cyberlaws, The Indian IT Act Challenges to Indian Law and Cybercrime Scenario in India, Weakness in Information Technology Act and it consequences, Digital Signatures and the Indian IT Act, Cybercrime and Punishment; Technology, Students and Cyberlaw; Survival tactics for the Netizens, Cyber-offenses: Cyberstalking, Cybercafe and Cybercrimes, Botnets, Attack Vector, Cloud Computing.

UNIT II

UNIT III

UNIT IV

TEXT BOOKS:

- “Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives”, Nina Godbole, Sunit Belapur, Wiley India Publications, April, 2011

Note:

1. In the semester examination, the examiner will set two questions from each unit (total 08 questions in all), covering the entire syllabus. The students will be required to attempt only 5 questions selecting at least one question from each unit.
IT402B DATA ANALYTICS AND APPLICATIONS
B. Tech. Semester – VIII (Information Technology)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Class Work</th>
<th>Examination</th>
<th>Total</th>
<th>Duration of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>25 Marks</td>
<td>75 Marks</td>
<td>100</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Unit-I

Unit-II

Unit-III
Data Visualization: Meaning and significance, Traits of Meaning full Data, Brief History of Information Visualization, Power of visual perception, Making abstract data Visible, Building Blocks of information Visualization, Analytical Techniques.

Unit-IV
Big Data, In-Memory Processing, limitations of In Memory Processing. Big Data Privacy, Big data Visualization, Map Reduce algorithm, OLAP and its applications, Data Mining Process, Knowledge Discovery, Decision Support Systems

Text Books

 Publisher: Jonathan G Koomey
2. Big Data Analytics: Turning Big Data into Big Money by Frank J. Ohlhorst
 Publisher: Wiley

References Books

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
Unit-I
Introduction: History of Unix and Linux, Architecture of Linux, Advantages of Linux.
Installation and Hardware configuration: Creating an Installation Diskette, Booting Linux Installation Program, Partitioning Hard Drive(s), Setting up Swap Space Choosing Partitions to Format Booting with LILO, Multi-boot with Other Operating Systems

Unit-II
Introduction to Kernel, Introduction to Linux Shell: Types of Shell, Feature and benefits of Shell. I/O redirection and Piping, pipes, filters, Introduction to various text editor, various Vi editing modes, scrolling, yank and paste, put and delete, set commands, Comparison of EmacsEditor, vi Editor, Pico Editor.

Unit-III
Introduction to Linux Files: Rules for creating files, Linux Files system, File printing, searching files using grep, change permission to set files and change owner of the files. Process, Listening with ps, killing with kill, PID, UID, GID, Signals, nice, renice.

Unit-IV
General Administration issues: root account, Creating user in Linux, Changing password, deleting user, disabling user account, Linux Password & Shadow File Formats System Shutdown and Restart creating groups, Custom Configuration and Administration Issues, Simple commands
Introduction to devices: IDE, SCSI, USB and its interface, pin configuration of various devices, Disk Geometry, Configuration of web server, FTP and Telnet. Shell programming, network configuration.

Text Books:

Reference Books:

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
1. Introduction to SPSS and its various windows.
2. Basic Analysis on descriptive statistics
 a) Frequencies Menu
 b) Descriptives Menu
3. Creating a Histogram and study of Grouped By Factor
4. Creating a Box Plot.
5. Creating a Stem and Leaf Display.
6. Study of Sampling Distribution
7. Perform one sample T-Test
8. Perform independent Samples T-Test
9. Paired Samples T-Test
10. Perform a Binomial Test
11. Perform One Sample Chi-Square Test.

Note: 1. at least 5 more exercises related to the contents of the subject, must be given by concerned teacher.

Note: 2. SPSS is not the only statistical package available, and there are other several softwares available (e.g., SAS, Stata, R). students must be trained in anyone of these.
1. Write Shell Programs for the following
 a. Display all the words which are entered as command line arguments.
 b. Changes Permissions of files in PWD as rwx for users.
 c. To print the list of all sub directories in the current directory.
 d. Program which receives any year from the keyboard and determine whether the year is leap year or not. If no argument is supplied the current year should be assumed.
 e. Program which takes two file names as arguments, if their contents are same then delete the second file.

2. Write shell scripts for the following
 a. To print the given number in the reversed order.
 b. To print first 25 Fibonacci numbers.
 c. To print the Prime numbers between the specified range.
 d. To print the first 50 Prime numbers.

3. Write shell scripts for the following
 a. To delete all lines containing the word ‘unix’ in the files supplied as arguments.
 b. Menu driven program which has the following options.
 I. contents of /etc/passwd
 II. list of users who have currently logged in.
 III. present working directory
 IV. exit.
 c. For sorting, searching and insertion, deletion of elements in the list

4. Program to transfer the data from one file to another file by using un-buffered I/O.

5. Program to create two processes to run a loop in which one process adds all even numbers and the other adds all the odd numbers (Hint: use fork()).

6. Program to create to process ‘i’ and sends data to process ‘j’, prints the same after receiving it. (Hint: use vfork()).

7. Program to demonstrates orphan process .

8. Program which demonstrates how to avoid Zombie using wait() .
UNIT-I

Introduction: Codes and Ciphers – Some Classical systems – Statistical theory of cipher systems- Complexity theory of crypto systems – Stream ciphers, Block ciphers.

UNIT-II

Stream Ciphers: Rotor based system – shift register based systems – Design considerations for stream ciphers – Cryptanalysis of stream ciphers – Combined encryption and encoding. Block Ciphers – DES and variant, modes of use of DES.

UNIT-III

Malicious Code: Epidemic of viruses: types of viruses, prevention from virus, life cycle of a virus, immunization, Trojan horse and bombs with examples, writing antivirus / Trojan codes, Security Tools: Firewall and Intrusion detection systems.

UNIT-IV

Security: Hash function – Authentication: Protocols – Digital Signature standards.
Electronics Mail Security – PGP (Pretty Good Privacy) MIME, data Compression technique.
Web security: Secure Socket Layer & Transport Layer security, secure electronic transactions.
Firewalls Design principle, established systems.

Text Books:
3. SNMP, Stalling, Willian (AWL)

Reference Books:
1. SNMP: A Guide to Network Management (MGH)
2. Telecom Network Management by H.H. Wang (MGH)
3. Network Management by U. Dlack (MGH)

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
Unit-I
Issues in Mobile Computing, Overview of wireless Telephony, IEEE 802.11 & Blue Tooth, Wireless Multiple access protocols, channel Allocation in cellular systems.
Data Management Issues, data replication for mobile computers, adaptive Clustering for Mobile Wireless networks.

Unit-II

Unit-III
Mobile Agents Computing, Security and fault tolerance, transaction processing in Mobile computing environment.

Unit-IV
Ad hoc network, Routing Protocol, Global State Routing (GSR), Dynamic State Routing (DSR), Fisheye State Routing (FSR), Ad hoc On-Demand Distance Vector (AODV), Destination Sequenced Distance – Vector Routing (DSDV).

Text Books
3. Wrox The Beginning WML and WML Script, Wrox Publication

References Books

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
Unit-I

Introduction: Concept of Multimedia, Media & data stream, main properties of multimedia system, Data stream characteristics & for continuous media Multimedia Applications, Hardware Software requirements, Multimedia products & its evaluation.

Components of multimedia: Text, Basic sound concepts, MIDI, Speech, Basic concept of Images, Graphics format, Overview of image processing, Basic concepts of Video & animation, Conventional system, Transmission, Enhanced system, High Definition system, Computer based animation, Design & Authoring Tools, Categories of Authority Tools, Types of products.

Unit-II

Data Compression: Coding requirement, Source, entropy, hybrid coding, JPEG, MPEG, Text compression using static Huffman technique, Dynamic Huffman Technique, Statistical coding techniques.

Unit-III

Computer Technology: Hybrid system, digital system.

Unit-IV

Text Books
1. David Hillman, Multimedia Technology & Applications, Galgotia Publications.
3. John Vince virtual Reality Systems Pearson Education

Reference Books
1. Andleigh and Thakarar Multimedia System Design PHI

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
Unit-I:
Introduction to Data Warehouse: Data warehousing Definition, DBMS vs data warehouse, Three-tier architecture, Multidimensional data model, Schemas for Multidimensional Databases, OLAP operations, multi-feature cubes.
Introduction to Data Mining: Data mining definition & task, KDD process, KDD versus data mining, data mining tools and applications, issues, data mining task primitives, supervised and unsupervised learning approaches, Data preprocessing.

Unit-II:
Mining Association rules: The a-priori algorithm, generating rules, improving the efficiency of a-priori; rule mining by partitioning; Parallel and Distributed algorithms: CDA & DDA; advanced techniques: multi-dimensional and multi-level association rules, correlation rules; meta-rule guided mining and constraint based rule mining, Incremental rule mining.

Unit III:
Clustering techniques: Cluster analysis, similarity and distance measures, partitioning methods: squared error, k-means, k-medoids and genetic algorithm approach; Hierarchical Clustering: agglomerative Vs Divisive, Density based methods: Basic definitions and DBSCAN algorithm; Constraint based clustering.

Unit IV:
Classification and Prediction
Classification by Decision tree induction: information gain measure, Tree pruning methods, Bayesian classification, rule based classification, backpropagation through Neural Networks, Genetic Algorithm, Rough Sets, Support Vector Machines and Fuzzy techniques; Prediction: linear and non-linear regression techniques.

Text Books:
Data Mining: Introductory and advanced topics: Margaret H Dunham, S. Sridhar; Pearson education, 2008.

Reference books
1. Data Warehousing In the Real World; Sam Anahory & Dennis Murray; 1997, Pearson.
2. Data Mining- Concepts & Techniques; Jiawei Han & Micheline Kamber- 2001, Morgan Kaufmann.
4. Data Mining; Pieter Adriaans & Dolf Zantinge; 1997, Pearson,

Note: Eight questions will be set in all by the examiners taking at least one question from each unit. Students will be required to attempt five questions in all.
Unit-I

Agents Introduction

Unit-II

Agent Communication, Collaboration, and Mobility

Unit-III

Mobile Agents Models and Framework: Standardization and Evolution,

Unit-IV

Text Books :-

References Books :-

1. Danny Lange & Mitsuru Oshima, Programming and Deploying Java Mobile Agents with Aglets, Addison- Wesley, 1998,

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
Unit-I

Unit-II
Neural Model and Network Architectures, Perception Learning, Supervised Hebbian Learning, Backpropagation, Associative Learning, Competitive Networks, Hopfield Network, Computing with Neural Nets and applications of Neural Network.

Unit-III
Introduction to Fuzzy Sets, Operations on Fuzzy sets, Fuzzy Relations, Fuzzy Measures, Applications of Fuzzy Set Theory to different branches of Science and Engineering.

Text Books

Reference Books

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all; at least one from each unit.
UNIT-I

UNIT-II
GSM & GPRS: GSM features and Architecture, Network Aspects in GSM, GSM Frequency Allocation, Mobility management, hand-off mechanisms, cell splitting, Security issues used in GSM, GPRS features and architecture, network operations, data services in GPRS, applications and limitations, SMS and MMS services architecture and operation details.

UNIT-III

UNIT-IV
M-Commerce: Introduction to m-commerce: Emerging applications, different players in m-commerce, m-commerce life cycle Mobile financial services, mobile entertainment services, and proactive service management.

Management of mobile commerce services: Content development and distribution to hand-held devices, content caching, pricing of mobile commerce services.

The emerging issues in mobile commerce: The role of emerging wireless LANs and 3G/4G wireless networks, personalized content management, implementation challenges in m-commerce, futuristic m-commerce services.

TEXT BOOKS:

REFERENCE BOOKS:
Unit-I

Concepts and Overview: Concepts of software quality, quality attributes, software quality control and software quality assurance, evolution of SQA, major SQA activities, major SQA issues, zero defect software.

Software Quality Assurance: The philosophy of assurance, the meaning of quality, the relationship of assurance to the software life cycle, SQA techniques. Tailoring the Software Quality Assurance Program: Management review process, technical review process, walkthrough, software inspection process, configuration audits, document verification.

Unit-II

Evaluation: Software requirements, preliminary design, detailed design, coding and unit test, integration and testing, system testing, types of evaluations.

Error Reporting: Identification of defect, analysis of defect, correction of defect, implementation of correction, regression testing; Categorization of defect, relationship of development phases.

Unit-III

Trend Analysis: Error quantity, error frequency, program unit complexity, compilation frequency. **Corrective action as to Cause:** Identifying the requirement for corrective action, determining the action to be taken, implementing the corrective action, documenting the corrective action, periodic review of actions taken.

Unit-IV

CASE tools and their effect on Software Quality, Software Quality Metrics, Standards, certification and assessment, Quality management standards, Quality standards with emphasis on ISO approach, Capability Maturity Models-CMM and CMMI, TQM Models, Bootstrap methodology, The SPICE project, ISO/IEC 15504, Six Sigma Concept for Software Quality.

Text Books

Reference Books

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
CSE455B ADVANCED COMPUTER ARCHITECTURE (ELECTIVE-II)
B.TECH. (INFORMATION TECHNOLOGY) 8TH SEMESTER

L T P Credits
3 1 4

Class Work : 25 Marks
Exam. : 75 Marks
Total : 100 Marks
Duration of Exam : 3 hrs.

Unit-I Introduction: Elements of modern computers (computing problems, algorithms, hardware, OS, system software); Evolution of computer architecture; Factors affecting system performance; architectural development tracks (Multiple-processor tracks, Multivector & SIMD tracks, Multithread & Dataflow tracks)
Conditions of parallelism (Data dependence, Resource dependence, control dependence, Bernstein’s Conditions); Hardware & Software parallelism; Program partitioning & Scheduling; Program flow machines (Control flow, Data flow, Demand driven); Parallel processor applications; Speedup performance laws (Amdahl’s law, Gustafson’s law); Scalability (Goals, Metrics, evolution of scalable architectures, open issues)

Unit-II Advanced processor Technology: Design space; Instruction pipelines; Instruction set architecture (RISC, CISC, RISC scalar processors, CISC scalar processors); Superscalar Processors, VLIW architecture; Vector & Symbolic processors; Pipelining: Linear pipeline processors, Nonlinear pipeline processors, Instruction pipeline(pipelined instruction processing, mechanisms for instruction pipelining, dynamic instruction scheduling, branch handling techniques)
Parallel & Scalable Architectures: Hierarchical bus system, Crossbar switch & multiport memory, multistage & combining networks; Cache coherence & synchronization mechanisms (cache coherence problem, Snoopy bus protocols, directory based protocols)

Unit-III Advanced Memory Technology: Bus system (Backplane bus specification, addressing & timing protocols, Arbitration, Transaction, Interrupt, IEEE futurebus) Cache organizations (Cache addressing models, cache performance issues); Shared memory organizations (Interleaved memory organization, Bandwidth and fault tolerance, memory allocation schemes, Sequential & weak consensus models, Latency hiding techniques)

Unit-IV Parallel Models and Languages: Parallel Programming Models (Shared-Variable, Message passing, Data-Parallel, Object-Oriented); Parallel languages & Compilers (language features for parallelism, parallel language constructs, optimizing compilers for parallelism); Code optimization & partitioning (Scalar optimization, Local & Global optimization, Vectorization, code generation & scheduling, Trace scheduling compilation); Parallel programming environments (S/W Tools, Y-MP, Paragon, CM-5 Environments, Visualization & Performance tuning)

TEXT BOOK:

REFERENCE BOOKS:

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
CSE403B CLOUD COMPUTING (ELECTIVE-II)
B.TECH. (INFORMATION TECHNOLOGY) 8TH SEMESTER

L T P Credits
Class Work : 25 Marks
Exam. : 75 Marks
Total : 100 Marks
Duration of Exam : 3 hrs

Unit-I
Introduction: Cloud computing history, architecture and essential characteristics, cloud service models, Cloud Deployment models, advantages of cloud computing, cloud v/s grid computing.

Unit-II
Virtualization: Virtualization techniques, Benefits and drawbacks of virtualization, VM migration with its types, hypervisors, types of hypervisors, distributed management of virtual infrastructures, scheduling techniques for advance reservation of capacity, Service-oriented architectures, SOA implementation, SOAP v/s REST, web 2.0.

Unit-III
PaaS: Introduction, advantages and disadvantages of PaaS, introduction to google app engine, GAE cost structure, Apache hadoop: MapReduce, HDFS, Hive, Mapreduce programming model, Hadoop as a service.

Unit-IV
Migrating into the cloud: Introduction, challenges in the cloud, legal issues in cloud computing, Cloud Economics and Capacity Management: Restricted Choices, Capacity Planning, Queuing and Response Time, Evidence Based Decision Making, Instrumentation (Measuring Resource Consumption), Bottlenecks, Key Volume Indicators.

Text Books:

Reference Books:
2. Implementing and Developing Cloud Computing Applications: David E.Y Sarna, CRC Press.

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
CSE460B GREEN COMPUTING (ELECTIVE-II)
B.TECH. (INFORMATION TECHNOLOGY) 8TH SEMESTER

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class Work: 25 Marks
Exam.: 75 Marks
Total: 100 Marks
Duration of Exam: 3 hrs

Unit-I
Approaches to green computing- Middleware Support, Compiler Optimization, Product longevity.

Unit-II
Algorithmic efficiency, High performance computing, Sustainable computing, Resource allocation,
Virtualization, Server Consolidation.

Unit III
Terminal servers, Power management, Operating system support, Power supply, Storage, Video card,
Display, Tools for monitoring.

Unit IV
Green mobile, optimizing for minimizing battery consumption, Web, Temporal and Spatial Data Mining
Materials recycling, Telecommuting, metrics for green computing.

Text Book(s)
1. Green Computing and Green IT Best Practices on Regulations and Industry Initiatives,
Virtualization, Power Management, Materials Recycling and Telecommuting by Jason Harris, Emereo
Publishing

Reference Book(s)
1. Green Data Center: The steps for the journey by A. Galea, M. Schafer, M. Ebbers, IBM Press
2. The Greening of IT: How companies can make a difference for the environment by John Lamb, IBM
Press
3. Green Computing: Large-Scale Energy Efficiency by Wu-chun Feng, Virginia Polytechnic Institute and
State University, Blacksburg, USA (Eds.), CRC Press
Kawahara, Takayuki; Mizuno, Hiroyuki (Eds.), Springer Press
5. Sustainable ICTs and Management Systems for Green Computing by Wen-Chen Hu (University of
North Dakota, USA) and Naima Kaabouch (University of North Dakota, USA), IGI Global Press
Society Limited.

Note: Eight questions will be set by the examiners taking at least two questions from each unit.
Students will be required to attempt five questions in all at least one from each unit.
CSE466B EMBEDDED SYSTEMS (ELECTIVE-II)
B.TECH. (INFORMATION TECHNOLOGY) 8TH SEMESTER

L T P Credits Class Work : 25 Marks
4 4
Exam. : 75 Marks
Total : 100 Marks
Duration of Exam : 3 hrs

Unit -I
The concepts of embedded system design, Embedded microcontroller cores, embedded memories, examples of embedded systems.
Technological aspects of embedded system: interfacing between analog and digital blocks, signal conditioning, Digital signal processing, subsystem interfacing, interfacing with external systems, user interfacing, Design tradeoffs due to process compatibility, Thermal consideration etc.
Software aspects of embedded systems: real time programming languages and operating systems.

Unit-II
Introduction, CPU architecture, registers, instruction sets addressing modes Loop timing, timers, Interrupts; Interrupt timing, I/O Expansion, I2C Bus Operation Serial EEPROM, Analog to digital converter, UART Baud Rate-Data Handling-Initialisation, Special Features - serial Programming-Parallel Slave Port.

Unit-III

Unit-IV
Real Time Operating System: Task and Task States, tasks and data, semaphores and shared Data Operating system Services-Message queues-Timer Function-Events-Memory Management, Interrupt Routines in an RTOS environment, basic design Using RTOS.

Books for references

Note: Eight questions will be set by the examiners taking at least two questions from each unit. Students will be required to attempt five questions in all at least one from each unit.
The objectives of the course remain:

- To learn how to carry out literature search
- To learn the art of technical report writing
- To learn the art of verbal communication with the help of modern presentation techniques

A student will select a topic in emerging areas of Engineering & Technology and will carry out the task under the observation of a teacher assigned by the department.

He/ She will give a seminar talk on the same before a committee constituted by the chairperson of the department. The committee should comprise of three faculty members from different specializations. The teacher associated in the committee will be assigned 2 hours teaching load per week.

However, guiding students' seminar will not be considered towards teaching load.

The format of the cover page and the organization of the body of the seminar report for all the undergraduate programs will be finalized and circulated by the Dean, Faculty of Engineering and Technology.

The project started in VII Semester will be completed in VIII Semester and will be evaluated through a panel of examiners consisting of the following:

- Chairperson of Department: Chairperson
- Project coordinator: Member
- External expert: To be appointed by the University

The student will be required to submit two copies of his/her project report to the department for record (one copy each for the department and participating teacher).

Project coordinator will be assigned the project load of, maximum of 2 hrs. per week including his own guiding load of one hr. However, the guiding teacher will be assigned maximum of one period of teaching load irrespective of number of students/groups under him/her.

The format of the cover page and the organization of the body of the report for all the B. Tech. will be finalized and circulated by the Dean, Faculty of Engineering and Technology.
The purpose of this course is to inculcate a sense of professionalism in a student along with personality development in terms of quality such as receiving, responding, temperament, attitude and outlook. The student efforts will be evaluated on the basis of his/her performance / achievements in different walks of life.

The evaluation will be made by the committee of examiners constituted as under:

1. Dean, Faculty of Engineering & Technology / Director /Principal of affiliated college : Chairperson
2. Chairperson of the department : Member
3. External expert : Appointed by the university

A. The student will present a written report before the committee with following in view:

The student will present before the committee his/her achievements during the current academic session in the form of a written report highlighting followings:

I. Academic Performance --------
II. Extra Curricular Activities / Community Service, Hostel Activities (12 Marks)
III. Technical Activities / Industrial, Educational tour (12 Marks)
IV. Sports/games (16 Marks)

Note: Report submitted by the students should be typed on both sides of the paper.

B. A student will support his/her achievement and verbal & communicative skill through presentation before the examiners. (40 Marks)

C. Faculty Counselor Assignment (20 Marks)

It will be the duty of the student to get evaluated by respective faculty counselor and to submit the counselor assessment marks in a sealed envelope to the committee.

A counselor will assess the student which reflects his/her learning graph including followings:

1. Discipline throughout the year
2. Sincerity towards study
3. How quickly the student assimilates professional value system etc.
4. Moral values & Ethics- Syllabus (one lecture/week on the topics of Human values/Ethics is to be delivered)